首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The purpose of this study was to explore the utility of the theory of planned behavior model developed by social psychologists for understanding and predicting the behavioral intentions of secondary science students regarding enrolling in physics. In particular, the study used a three-stage causal model to investigate the links from external variables to behavioral, normative, and control beliefs; from beliefs to attitudes, subjective norm, and perceived behavioral control; and from attitudes, subjective norm, and perceived behavioral control to behavioral intentions. The causal modeling method was employed to verify the underlying causes of secondary science students' interest in enrolling physics as predicted in the theory of planned behavior. Data were collected from secondary science students (N = 264) residing in a central Texas city who were enrolled in earth science (8th grade), biology (9th grade), physical science (10th grade), or chemistry (11th grade) courses. Cause-and-effect relationships were analyzed using path analysis to test the direct effects of model variables specified in the theory of planned behavior. Results of this study indicated that students' intention to enroll in a high school physics course was determined by their attitude toward enrollment and their degree of perceived behavioral control. Attitude, subjective norm, and perceived behavioral control were, in turn, formed as a result of specific beliefs that students held about enrolling in physics. Grade level and career goals were found to be instrumental in shaping students' attitude. Immediate family members were identified as major referents in the social support system for enrolling in physics. Course and extracurricular conflicts and the fear of failure were shown to be the primary beliefs obstructing students' perception of control over physics enrollment. Specific recommendations are offered to researchers and practitioners for strengthening secondary school students' intentions to study physics.  相似文献   

2.
Israel suffers from a growing problem of socio-economic gaps between those who live in the center of the country and residents of outlying areas. As a result, there is a low level of accessibility to higher education among the peripheral population. The goal of the Sidney Warren Science Education Center for Youth at Tel-Hai College is to strengthen the potential of middle and high school students and encourage them to pursue higher education, with an emphasis on majoring in science and technology. This study investigated the implementation and evaluation of the enrichment science academic program, as an example of informal learning environment, with an emphasis on physics studies. About 500 students conducted feedback survey after participating in science activities in four domains: biology, chemistry, physics, and computer science. Results indicated high level of satisfaction among the students. No differences were found with respect to gender excluding in physics with a positive attitudes advantage among boys. In order to get a deeper understanding of this finding, about 70 additional students conducted special questionnaires, both 1 week before the physics enrichment day and at the end of that day. Questionnaires were intended to assess both their attitudes toward physics and their knowledge and conceptions of the physical concept “pressure.” We found that the activity moderately improved boys’ attitudes toward physics, but that girls displayed decreased interest in and lower self-efficacy toward physics. Research results were used to the improvement of the instructional design of the physics activity demonstrating internal evaluation process for effective intervention.  相似文献   

3.
Abstract

Citizen science is a valuable tool in environmental and formal education in creating scientific knowledge for the researchers and facilitating learning and fostering a positive relationship toward the environment and study species. We present a case study on the Helsinki Urban Rat Project in which students surveyed rat occurrence in their own near environments. According to our results, experientiality, involvement, meaningfulness, freedom to choose, ease of participation, and the rats themselves contributed to students’ increased interest in participation. Furthermore, students described diverse factual, conceptual, procedural, and metacognitive knowledge that they acquired during their participation. In general, students described negative attitudes toward rats, but they less negative views on rats after participation. We reflect on the success of the citizen science project and implications of planning a future citizen science project and incorporating citizen science in formal education.  相似文献   

4.
This study explores how students' physics identities are shaped by their experiences in high school physics classes and by their career outcome expectations. The theoretical framework focuses on physics identity and includes the dimensions of student performance, competence, recognition by others, and interest. Drawing data from the Persistence Research in Science and Engineering (PRiSE) project, which surveyed college English students nationally about their backgrounds, high school science experiences, and science attitudes, the study uses multiple regression to examine the responses of 3,829 students from 34 randomly selected US colleges/universities. Confirming the salience of the identity dimension for young persons' occupational plans, the measure for students' physics identity used in this study was found to strongly predict their intended choice of a physics career. Physics identity, in turn, was found to correlate positively with a desire for an intrinsically fulfilling career and negatively with a desire for personal/family time and opportunities to work with others. Physics identity was also positively predicted by several high school physics characteristics/experiences such as a focus on conceptual understanding, real‐world/contextual connections, students answering questions or making comments, students teaching classmates, and having an encouraging teacher. Even though equally beneficial for both genders, females reported experiencing a conceptual focus and real‐world/contextual connections less frequently. The explicit discussion of under‐representation of women in science was positively related to physics identity for female students but had no impact for male students. Surprisingly, several experiences that were hypothesized to be important for females' physics identity were found to be non‐significant including having female scientist guest speakers, discussion of women scientists' work, and the frequency of group work. This study exemplifies a useful theoretical framework based on identity, which can be employed to further examine persistence in science, and illustrates possible avenues for change in high school physics teaching. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 978–1003, 2010  相似文献   

5.
The development of scientifically literate citizens remains an important priority of science education; however, growing evidence of students' disenchantment with school science continues to challenge the realization of this aim. This triangulation mixed methods study investigated the learning experiences of 152 9th grade students as they participated in an online science‐writing project on the socioscientific issue of biosecurity. Students wrote a series of hybridized scientific narratives, or BioStories, that integrate scientific information about biosecurity with narrative storylines. The students completed an online Likert‐style questionnaire, the BioQuiz, which examined selected aspects of their attitudes toward science and science learning, prior to their participation in the project, and upon completion of the writing tasks. Statistical analyses of these results and interview data obtained from participating students suggest that hybridized writing about a socioscientific issue developed more positive attitudes toward science and science learning, particularly in terms of the students' interest and enjoyment. Implications for research and teaching are also discussed. © 2011 Wiley Periodicals, Inc. J Res Sci Teach 48: 878–900, 2011  相似文献   

6.
This study investigated the differential effects of two modes of instructional program (conceptual change oriented and traditionally designed) and gender difference on students' understanding of heat and temperature concepts, and their attitudes toward science as a school subject. The subjects of this study consisted of 72 seventh grade students from two General Science Classes taking the course from the same teacher. Each teaching method was randomly assigned to one class. The experimental group received reinforcement via the conceptual change texts while the control group utilized traditionally designed science texts over a period of four weeks. Analysis of covariance was used. Logical thinking ability was taken as a covariate. The results showed that the conceptual change oriented instruction produced significantly greater achievement in understanding of heat and temperature concepts. The result for science attitudes as a school subject showed no significant difference between the experimental and control groups. Also, no significant difference was found between the performance of females and that of males in terms of learning heat and temperature concepts and attitudes toward science, but the interaction of treatment regarding to gender was significant for learning the concepts. In addition, it was found that students' logical thinking ability accounted for a significant portion of variation in heat and temperature concepts achievement.  相似文献   

7.
This study explores the relationship between affective and cognitive variables in grade 9 chemistry students (n = 73). In particular, it explores how students' situational interest, their attitudes toward chemistry, and their chemistry‐specific self‐concept influence their understanding of chemistry concepts over the course of a school year. All affective variables were assessed at two time points: at the middle of the first semester of grade 9, and at the end of the second semester of grade 9, and then related to students' postinstructional understanding of chemical concepts. Results reveal that none of the affective variables measured at the earliest time point have a significant direct effect on postinstructional conceptual understanding. Looking at the different affective variables as intermediary constructs, however, reveals a pattern in which self‐concept and situational interest measured at the middle of grade 9 contribute to self‐concept measured at the end of grade 9, which in turn, has a positive, significant effect on students' postinstructional conceptual understanding. These results reveal the importance of a strong and positive self‐concept, the feeling of doing well in the chemistry class, for developing a meaningful understanding of scientific concepts. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 44: 908–937, 2007  相似文献   

8.
9.
The development of three-dimensional learning among all K-12 student demographics remains a prominent goal for the field of science education. However, substantial research in science teacher education for urban populations showcases hurdles to overcome in order to achieve this goal, particularly for elementary teachers. Research shows that urban elementary teachers are often ill-prepared to develop a type of science pedagogy responsive to students' learning needs. The fidelity of such pedagogies that these teachers adhere to when trying to implement such a requested content–relationality between these populations and how their local contexts can be used as sites to learn science in relevant ways are often not fully realized, as well. Given that science achievement gaps exhibit racial disparities starting in primary grades and attitudes toward science have been shown to affect academic achievement and motivation, we argue that one way to ameliorate, in at least an incremental way, this disparity is to design novel learning experiences to prime students to see the relevancy of science in their local contexts before such three-dimensional designed learning is set to occur. In this research, we leveraged the immersive nature of Virtual Reality 360 videos and present a design-based research iteration testing how this novel technologically enhanced learning experience may have influenced close to 400 urban elementary students' attitudes toward science around those attitudes labeled as “behavioral beliefs” by the field. Using a concurrent, convergent mixed-methods design with a two-way multivariate analysis of covariance quantitative data set triangulated with students' qualitative self-reports that were transformed into quantitative preponderances in graphic form, the data support that our design iteration emphasizing the importance of context as a design focus can prime students who struggle to see science as relevant to change their attitudes. Implications are discussed around relationality, novel technological affordances, and the use of local contexts as learning resources.  相似文献   

10.
Asian students often perform well in international science and mathematics assessments. Their attitude toward technical subjects, such as physics, remains curious for many. The present study examines Singapore school students' views on various aspects of physics according to whether they intend to choose physics as an advanced field of study. A sample of 1076 physics students, from 16 secondary schools and junior colleges, participated in this study. The students were categorized as physics choosers or non-choosers according to their indicated intention, as sought in the survey, to study or not to study physics as a major subject at university after their leaving level examinations. Rasch-anchored analysis was employed to interpret the results; the use of Rasch analysis has helped to overcome significantly the psychometric limitations inherent in the treatment of Likert scale type of data using traditional analysis. As expected, the image of physics as a difficult subject surfaced in the samples used in our study. The students recognized unequivocally the utilitarian value of physics: physics is said to enhance career options and is necessary for technological progress to occur in a country. They also showed high interest in school physics—this is so even for students who are not keen to study physics in the future, a finding which is at variance with other studies reported from Western countries. School physics is seen to be relevant, and physics teachers are viewed as being able to foster students' interest in physics. Laboratory work, enrichment activities, and physics textbooks were reported to be important in order to encourage students to like physics. Though the physics choosers showed greater intention in physics, they were generally not inclined to pursue physics-related careers after graduation. Parents and peers at school, on the other hand, are perceived to display unenthusiastic attitudes toward physics. Possible reasons for these are discussed along with the implications of the study.  相似文献   

11.
The development of students' interest in school science activities, their understanding of central chemical concepts, and the interplay between both constructs across Grades 5–11 were analyzed in a cross-sectional paper-and-pencil study (N = 2,510, mean age 11–17 years). Previous empirical findings indicate that students' knowledge increases over the time of secondary school while students' interest, especially in natural science subjects, tends to decrease. Concomitantly, there is evidence for an increase in the positive coupling between interest and knowledge across time. However, previous studies mainly rely on rather global measures, for example, school grades or general subject-related interest, and focus on science as an integrated subject instead of specific disciplines, for example, chemistry. For this article, more proximal and differentiated measures for students' understanding of three chemical concepts (Chemical Reaction, Energy, Matter) and interest in seven dimensions of school science activities according to the RIASEC + N model (Realistic, Investigative, Artistic, Social, Enterprising, Conventional, and Networking; cf. Dierks, Höffler, & Parchmann, 2014) were applied. The results are in line with previous research indicating a general increase in conceptual understanding and a decline in students' interest for all school science activities. However, the interplay between conceptual understanding and interest differs across the seven dimensions. Interest in activities which are likely to promote cognitive activation (investigative, networking) or involving the communication of knowledge (social, enterprising, and networking) are increasingly connected to conceptual understanding, especially in upper secondary grades. Interest in guided hands-on activities (realistic) which are typical in secondary science teaching, however, shows only small positive correlations to students' conceptual understanding across all grades. Hence, in upper-secondary school, investigative, social, enterprising, and networking activities seem to provide opportunities to benefit most from the interrelation between students' interests and their understanding.  相似文献   

12.
As part of our Physics Education Research Group efforts to transform the physics instruction at Florida International University (FIU), we have focused attention on how to assess the reforms we implement. In this paper, we argue that the physics education community should expand the ways that it measures students' success beyond grades and conceptual inventory scores to include assessments of students' participation in a learning community and changes in their attitudes. We present case studies of three introductory undergraduate physics students' increasing participation in the physics learning community at FIU, which is a large, urban, Hispanic-serving institution. In previous work, we have reported gains in conceptual learning and attitudes about learning science in those students enrolled in the introductory courses at FIU taught with Modeling Instruction, which operates in a collaborative learning environment [Brewe, E., Kramer, L., & O'Brien, G. (2009 Brewe, E., Kramer, L., & O'Brien, G. (2009). Modeling instruction: Positive attitudinal shifts in introductory physics measured with CLASS. Physical Review Special Topics—Physics Education Research, 5(1). doi: 10.1103/PhysRevSTPER.5.013102  [Google Scholar]). Modeling instruction: Positive attitudinal shifts in introductory physics measured with CLASS. Physical Review Special Topics—Physics Education Research, 5(1). doi: 10.1103/PhysRevSTPER.5.013102]. This paper expands upon those results in considering the variety of opportunities for participating in the physics learning community and by closely examining three aspect of student participation: students' attitudes about learning physics, their ties within the physics classroom, and their relationships within the physics learning community. This provides a more comprehensive understanding of how students in underrepresented groups may become successful physics learners.  相似文献   

13.
Grade 10 students' perceptions of classroom practices and activities, as well as their attitudes toward science teaching and school science, were assessed in the Westend School District (pseudonym) in British Columbia, using both quantitative (statistics of Likert-type scales) and qualitative (critical interpretive analysis of interview data) methods. The major findings of the study were that students do not appreciate the most prevailing contemporary practices in science classes, perceived by them as mainly the copying of the teacher's notes, and that they prefer science teaching and learning in which they take an active and responsible part. Additionally, teaching style appears to be the major determinant of high school students' attitudes toward science and science teaching. No change in students' perceptions of and attitudes toward science teaching and school science (in 1989 compared with 1986) could be detected in spite of the impact made by the recently advocated constructivist and science-technology-society (STS) approaches on science curriculum and science education. It is argued, therefore, that more emphasis must be placed on the science teachers' role and their teaching style if an educational change in the constructivist/STS direction is to be achieved.  相似文献   

14.
This study was designed to determine the influence of resequencing general science content on sixth grade students' science achievement, attitudes toward science, and interest in science. Resequencing content was accomplished for experimental group students through revising the order of textbook chapters in a general science course, in order to clarify content structure and establish interrelationships among major concepts. The subjects were 203 sixth grade learners randomly assigned to the two treatment groups of resequenced content and nonresequenced content. The findings revealed that students for whom content structure was clarified through resequencing general science chapters exhibited significantly higher science achievement, significantly more positive attitudes toward science, and significantly greater interest in science than students for whom general science content was not resequenced.  相似文献   

15.
《学习科学杂志》2013,22(2):243-256
Educational technology supports meaningful learning and enables the presentation of spatial and dynamic images, which portray relationships among complex concepts. The Technology-Enabled Active Learning (TEAL) Project at the Massachusetts Institute of Technology (MIT) involves media-rich software for simulation and visualization in freshman physics carried out in a specially redesigned classroom to facilitate group interaction. These technology-based learning materials are especially useful in electromagnetism to help students conceptualize phenomena and processes. This study analyzes the effects of the unique learning environment of the TEAL project on students' cognitive and affective outcomes. The assessment of the project included examining students' conceptual understanding before and after studying electromagnetism in a media-rich environment. We also investigated the effect of this environment on students' preferences regarding the various teaching methods. As part of the project, we developed pre- and posttests consisting of conceptual questions from standardized tests, as well as questions designed to assess the effect of visualizations and experiments. The research population consisted of 811 undergraduate students. It consisted of a small- and a large-scale experimental groups and a control group. TEAL students improved their conceptual understanding of the subject matter to a significantly higher extent than their control group peers. A majority of the students in the small-scale experiment noted that they would recommend the TEAL course to fellow students, indicating the benefits of interactivity, visualization, and hands-on experiments, which the technology helped enable. In the large-scale implementation students expressed both positive and negative attitudes in the course survey.  相似文献   

16.
Four hundred and fifty‐one students' attitudes towards science were investigated. Two types of instruments (questionnaire and Attitude Scale) were used to collect the data. The results show that the students in general hold a favourable attitude towards science; male students have more positive attitude towards science than female students; the type of school (science‐school, single‐sex school or general secondary school) attended have an effect on the students' attitudes to science. The low enrollment in science is not due to the lack of interest or negative attitudes to the subject but may be due to some other variables that need to be investigated.  相似文献   

17.
The present study examined students' attitudes toward science and associated constructs, based on the theories of reasoned action and planned behavior, and explored relationships between individual and school-related variables common to the research literature. Responses from 1,291 students in Grades 5 through 10 were collected using the 30-item Behaviors, Related Attitudes, and Intentions toward Science (BRAINS) Survey along with background information questions. Additional self-report data were collected from teachers (n = 56; 82.4%) in participating schools (n = 68) to obtain information about their education and experience, characteristics and practices, as well as other classroom variables, which could influence students' outlook. Student information, teacher data collected, and other data compiled about participating schools, were used to explore patterns in students' attitudes, beliefs, and intentions. These variables were used to generate multivariate multilevel models through a forward construction process. The final model presented favors individual variables to explain differences in students' responses on all five of the BRAINS subscales, more than group-level variables captured. Of the predictor variables explored, students' perceived science ability and frequency of talk with family were influential on all subscales, and increasing these variables had a positive effect on the estimated mean scores according to the final model presented. Findings from this study also include commonly observed relationships, such as the decline in attitudes over time, but these were found to be less pervasive in this sample. The paper concludes with a discussion about the comparative ineffectiveness of teacher and school-related variables in explaining students' attitudes toward science in this study, in light of design decisions and limitations, to guide future investigations.  相似文献   

18.
There is a growing interest in attitude research in recent years since the development of positive attitudes toward science and scientific inquiry has been widely accepted as an important aim of science education. Review of the research on students' science-related attitudes shows that not many studies have been carried out in Singapore. Of the few studies related to this area, quite different variables have been examined in the search for substantial influences in students' science-related attitudes.  相似文献   

19.
This paper describes responses from 28 first-year university physics students to one question of a written test which was followed up by an interview. The study has two main research aims. Firstly, it characterises the conceptual structures of students regarding the phenomenon in question. As well as being interesting in their own right, these student understandings cast light on some broader issues regarding understanding of field representations. While students' understandings of circuit electricity are well described in the existing science education literature, their understandings of field phenomena are not. Secondly, it throws light on theoretical questions about the SOLO Taxonomy, which is the framework used to study the students' conceptual structures. Of particular interest is the nature of student thinking that marks transition from the Concrete Symbolic to the Formal SOLO mode in this area. Specializations: physics education, electricity and magnetism, conceptual structures, SOLO Taxonomy. Specializations: SOLO Taxonomy, conceptual structures, mathematics education.  相似文献   

20.
MEASURING SCIENCE INTEREST: RASCH VALIDATION OF THE SCIENCE INTEREST SURVEY   总被引:2,自引:0,他引:2  
Students in the USA have fallen near the bottom in international competitions and tests in mathematics and science. It is thought that extrinsic factors such as family, community, and schools might be more influential than intrinsic attitudes toward science interest. However, there are relatively few valid and reliable measures of intrinsic factors such as interest relating to science. With the lack of intrinsic measures, it is difficult to determine the impact of extrinsic factors on the intrinsic construct. A fuller picture of the factors affecting intrinsic factors such as science interest will allow interventions to become more refined and targeted. Several studies suggest that student interest toward science affects the likelihood of the student pursuing advanced courses in science. The goal of this paper is to establish the validity and reliability of the Science Interest Survey and to determine if the survey meets the formal requirements of measurements as defined by the Rasch model. Results using both IRT and CRT analysis suggest that Science Interest Survey is an adequate measure of the unidimensional construct known as science interest. Results further suggest the Science Interest Survey is a valid and reliable measure for assessing science interest levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号