首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The literature provides confounding information with regard to questions about whether students in high school can engage in meaningful argumentation about socio‐scientific issues and whether this process improves their conceptual understanding of science. The purpose of this research was to explore the impact of classroom‐based argumentation on high school students' argumentation skills, informal reasoning, and conceptual understanding of genetics. The research was conducted as a case study in one school with an embedded quasi‐experimental design with two Grade 10 classes (n = 46) forming the argumentation group and two Grade 10 classes (n = 46) forming the comparison group. The teacher of the argumentation group participated in professional learning and explicitly taught argumentation skills to the students in his classes during one, 50‐minute lesson and involved them in whole‐class argumentation about socio‐scientific issues in a further two lessons. Data were generated through a detailed, written pre‐ and post‐instruction student survey. The findings showed that the argumentation group, but not the comparison group, improved significantly in the complexity and quality of their arguments and gave more explanations showing rational informal reasoning. Both groups improved significantly in their genetics understanding, but the improvement of the argumentation group was significantly better than the comparison group. The importance of the findings are that after only a short intervention of three lessons, improvements in the structure and complexity of students' arguments, the degree of rational informal reasoning, and students' conceptual understanding of science can occur. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 952–977, 2010  相似文献   

2.
This study examined the outcomes of a unit that integrates explicit teaching of general reasoning patterns into the teaching of a specific science content. Specifically, this article examined the teaching of argumentation skills in the context of dilemmas in human genetics. Before instruction only a minority (16.2%) of the students referred to correct, specific biological knowledge in constructing arguments in the context of dilemmas in genetics. Approximately 90% of the students were successful in formulating simple arguments. An assessment that took place following instruction supported the conclusion that integrating explicit teaching of argumentation into the teaching of dilemmas in human genetics enhances performance in both biological knowledge and argumentation. An increase was found in the frequency of students who referred to correct, specific biological knowledge in constructing arguments. Students in the experimental group scored significantly higher than students in the comparison group in a test of genetics knowledge. An increase was also found in the quality of students' argumentation. Students were able to transfer the reasoning abilities taught in the context of genetics to the context of dilemmas taken from everyday life. The effects of metacognitive thinking and of changing students' thinking dispositions by modifying what is considered valuable in the class culture are discussed. © 2002 John Wiley & Sons, Inc. J Res Sci Teach 39: 35–62, 2002  相似文献   

3.
Argumentation is fundamental to science education, both as a prominent feature of scientific reasoning and as an effective mode of learning—a perspective reflected in contemporary frameworks and standards. The successful implementation of argumentation in school science, however, requires a paradigm shift in science assessment from the measurement of knowledge and understanding to the measurement of performance and knowledge in use. Performance tasks requiring argumentation must capture the many ways students can construct and evaluate arguments in science, yet such tasks are both expensive and resource-intensive to score. In this study we explore how machine learning text classification techniques can be applied to develop efficient, valid, and accurate constructed-response measures of students' competency with written scientific argumentation that are aligned with a validated argumentation learning progression. Data come from 933 middle school students in the San Francisco Bay Area and are based on three sets of argumentation items in three different science contexts. The findings demonstrate that we have been able to develop computer scoring models that can achieve substantial to almost perfect agreement between human-assigned and computer-predicted scores. Model performance was slightly weaker for harder items targeting higher levels of the learning progression, largely due to the linguistic complexity of these responses and the sparsity of higher-level responses in the training data set. Comparing the efficacy of different scoring approaches revealed that breaking down students' arguments into multiple components (e.g., the presence of an accurate claim or providing sufficient evidence), developing computer models for each component, and combining scores from these analytic components into a holistic score produced better results than holistic scoring approaches. However, this analytical approach was found to be differentially biased when scoring responses from English learners (EL) students as compared to responses from non-EL students on some items. Differences in the severity between human and computer scores for EL between these approaches are explored, and potential sources of bias in automated scoring are discussed.  相似文献   

4.

Informal learning experiences have risen to the forefront of science education as being beneficial to students' learning. However, it is not clear in what ways such experiences may be beneficial to students; nor how informal learning experiences may interface with classroom science instruction. This study aims to acquire a better understanding of these issues by investigating one aspect of science learning, scientific reasoning ability, with respect to the students' informal learning experiences and classroom science instruction. Specifically, the purpose of this study was to investigate possible differences in students' scientific reasoning abilities relative to their informal learning environments (impoverished, enriched), classroom teaching experiences (non-inquiry, inquiry) and the interaction of these variables. The results of two-way ANOVAs indicated that informal learning environments and classroom science teaching procedures showed significant main effects on students' scientific reasoning abilities. Students with enriched informal learning environments had significantly higher scientific reasoning abilities compared to those with impoverished informal learning environments. Likewise, students in inquirybased science classrooms showed higher scientific reasoning abilities compared to those in non-inquiry science classrooms. There were no significant interaction effects. These results indicate the need for increased emphases on both informal learning opportunities and inquiry-based instruction in science.  相似文献   

5.
Current research indicates that student engagement in scientific argumentation can foster a better understanding of the concepts and the processes of science. Yet opportunities for students to participate in authentic argumentation inside the science classroom are rare. There also is little known about science teachers' understandings of argumentation, their ability to participate in this complex practice, or their views about using argumentation as part of the teaching and learning of science. In this study, the researchers used a cognitive appraisal interview to examine how 30 secondary science teachers evaluate alternative explanations, generate an argument to support a specific explanation, and investigate their views about engaging students in argumentation. The analysis of the teachers' comments and actions during the interview indicates that these teachers relied primarily on their prior content knowledge to evaluate the validity of an explanation rather than using available data. Although some of the teachers included data and reasoning in their arguments, most of the teachers crafted an argument that simply expanded on a chosen explanation but provided no real support for it. The teachers also mentioned multiple barriers to the integration of argumentation into the teaching and learning of science, primarily related to their perceptions of students' ability levels, even though all of these teachers viewed argumentation as a way to help students understand science. © 2012 Wiley Periodicals, Inc. J Res Sci Teach 49: 1122–1148, 2012  相似文献   

6.
Formative assessment, bilingualism, and argumentation when combined can enrich bilingual scientific literacy. However, argumentation receives little attention in the practice of bilingual science education. This article describes the effect of a formative assessment-based pedagogical strategy in promoting university students’ argumentation. It examines the written and oral arguments produced by 54 undergraduates (28 females and 26 males, 16–21 years old) in Colombia during a university bilingual (Spanish-English) science course. The data used in this analysis was derived from students’ written responses, and audio and video recordings. The first goal of this study was to determine how this teaching strategy could help students increase the use of English as a means of communication in argumentation in science. The second goal was to establish the potential of the strategy to engage students in argumentative classroom interactions as an essential part of formative assessment. The findings show that the strategy provided participants with opportunities to write their argumentation in Spanish, in English and in a hybrid version using code-switching. Educational implications for higher education are discussed.  相似文献   

7.
8.
Science classes should support students' development of scientific argumentation. While previous studies have analyzed argumentative texts, they have overlooked the ways in which other types of representations, including images, affect the production of such texts. In addition, studies into the use of visual images in science education have offered mostly qualitative analyses. To fill these gaps in the research, this study used techniques of automated image processing to extract relevant information from student-generated visual artifacts. Specifically, it used a series of image-processing algorithms to automatically extract and quantify features of images created by students to serve as evidence in support of scientific arguments. Using various statistical analyses, we identified the relationships between the extracted features and the students' performance levels in constructing scientific arguments. The results revealed that the presence of water in a student's image correlated significantly with that student's claim and explanation scores and that the amount of water present in a student's image correlated significantly with that student's claim score, but not with their explanation score. These results indicate that automatic image processing can successfully identify image features that affect students' performance in scientific argumentation. Using this analysis as an example, we discuss implications for incorporating automated image processing into further research into scientific argumentation and the development of automated feedback.  相似文献   

9.
Science includes more than just concepts and facts, but also encompasses scientific ways of thinking and reasoning. Students' cultural and linguistic backgrounds influence the knowledge they bring to the classroom, which impacts their degree of comfort with scientific practices. Consequently, the goal of this study was to investigate 5th grade students' views of explanation, argument, and evidence across three contexts—what scientists do, what happens in science classrooms, and what happens in everyday life. The study also focused on how students' abilities to engage in one practice, argumentation, changed over the school year. Multiple data sources were analyzed: pre‐ and post‐student interviews, videotapes of classroom instruction, and student writing. The results from the beginning of the school year suggest that students' views of explanation, argument, and evidence, varied across the three contexts with students most likely to respond “I don't know” when talking about their science classroom. Students had resources to draw from both in their everyday knowledge and knowledge of scientists, but were unclear how to use those resources in their science classroom. Students' understandings of explanation, argument, and evidence for scientists and for science class changed over the course of the school year, while their everyday meanings remained more constant. This suggests that instruction can support students in developing stronger understanding of these scientific practices, while still maintaining distinct understandings for their everyday lives. Finally, the students wrote stronger scientific arguments by the end of the school year in terms of the structure of an argument, though the accuracy, appropriateness, and sufficiency of the arguments varied depending on the specific learning or assessment task. This indicates that elementary students are able to write scientific arguments, yet they need support to apply this practice to new and more complex contexts and content areas. © 2011 Wiley Periodicals, Inc. J Res Sci Teach 48: 793–823, 2011  相似文献   

10.
11.
This study investigated the potential of students' written and oral questions both as an epistemic probe and heuristic for initiating collaborative argumentation in science. Four classes of students, aged 12–14 years from two countries, were asked to discuss which of two graphs best represented the change in temperature as ice was heated to steam. The discussion was initiated by asking questions about the phenomenon. Working in groups (with members who had differing viewpoints) and guided by a set of question prompts, an argument sheet, and an argument diagram, students discussed contrasting arguments. One group of students from each class was audiotaped. The number of questions written, the concepts addressed, and the quality of written arguments were then scored. A positive correlation between these factors was found. Discourse analysis showed that the initial focus on questions prompted students to articulate their puzzlement; make explicit their claims and (mis)conceptions; identify and relate relevant key concepts; construct explanations; and consider alternative propositions when their ideas were challenged. Productive argumentation was characterized by students' questions which focused on key ideas of inquiry, a variety of scientific concepts, and which made explicit reference to the structural components of an argument. These findings suggest that supporting students in productive discourse is aided by scaffolding student questioning, teaching the criteria for a good argument, and providing a structure that helps them to organize and verbalize their arguments. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 47:883–908, 2010  相似文献   

12.
The national science standards, along with prominent researchers, call for increased focus on scientific argumentation in the classroom. Over the past decade, researchers have developed sophisticated online science learning environments to support these opportunities for scientific argumentation. Assessing the quality of dialogic argumentation, however, has proven challenging. Existing analytic frameworks assess dialogic argumentation in terms of the nature of students' discourse, formal argumentation structure, interactions, and epistemic forms of reasoning. Few frameworks, however, connect these assessments to conceptual quality. We present an analytic framework for assessing argumentation in online science learning environments that relates levels of opposition with discourse moves, use of grounds, and conceptual quality. We then apply the proposed framework to students' dialogic argumentation within a representative online science learning environment to investigate the framework's potential affordances as well as to assess issues of reliability and appropriateness. The results suggest that the framework offers significant affordances and that it also offers high interrater reliability for trained coders. The applicability of the framework for offline contexts and future extensions of the framework are discussed in light of these results. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 45: 293–321, 2008  相似文献   

13.
Science education research, reform documents and standards include scientific argumentation as a key learning goal for students. The role of the teacher is essential for implementing argumentation in part because their beliefs about argumentation can impact whether and how this science practice is integrated into their classroom. In this study, we surveyed 42 middle school science teachers and conducted follow-up interviews with 25 to investigate the factors that teachers believe impact their argumentation instruction. Teachers responded that their own learning goals had the greatest impact on their argumentation instruction while influences related to context, policy and assessment had the least impact. The minor influence of policy and assessment was in part because teachers saw a lack of alignment between these areas and the goals of argumentation. In addition, although teachers indicated that argumentation was an important learning goal, regardless of students' backgrounds and abilities, the teachers discussed argumentation in different ways. Consequently, it may be more important to help teachers understand what counts as argumentation, rather than provide a rationale for including argumentation in instruction. Finally, the act of trying out argumentation in their own classrooms, supported through resources such as curriculum, can increase teachers' confidence in teaching argumentation.  相似文献   

14.
Since the late 1990s, there has been consensus among educational researchers that argumentation should play a central role in science education. Although there has been extensive relevant research, it is not clear enough how oral argumentation spontaneously occurs in science teaching. This is particularly important with regard to the empirical evidence suggesting the effect of discussion of contradictory views on scientific learning. In order to contribute to the research on argumentation in science teaching, we conducted a study that aims to sketch a panoramic view of the uses of oral argumentation in Chilean middle-school science teaching. A total of 153 videotaped science lessons were observed, involving students aged 10–11 and 12–13. Whole-class argumentative discourse was analysed as a function of thematic episodes and teachers' and students' utterances. Results suggest that argumentative discourse in which contradictory points of view are discussed is scarce but when it occurs it does so predominantly within discourse among students. On the contrary, argumentation aimed at justifying points of view is widely used, even more so when students are older.  相似文献   

15.
This study explores how student-generated questions can support argumentation in science. Students were asked to discuss which of two graphs showing the change in temperature with time when ice is heated to steam was correct. Four classes of students, aged 12–14 years, from two countries, first wrote questions about the phenomenon. Then, working in groups with members who differed in their views, they discussed possible answers. To help them structure their arguments, students were given a sheet with prompts to guide their thinking and another sheet on which to represent their argument diagrammatically. One group of students from each class was audiotaped. Data from both students' written work and the taped oral discourse were then analyzed for types of questions asked, the content and function of their talk, and the quality of arguments elicited. To illustrate the dynamic interaction between students' questions and the evolution of their arguments, the discourse of one group is presented as a case study and comparative analyses made with the discourse from the other three groups. Emerging from our analysis is a tentative explanatory model of how different forms of interaction and, in particular, questioning are needed for productive argumentation to occur.  相似文献   

16.
17.

Constructing scientific arguments is an important practice for students because it helps them to make sense of data using scientific knowledge and within the conceptual and experimental boundaries of an investigation. In this study, we used a text mining method called Latent Dirichlet Allocation (LDA) to identify underlying patterns in students written scientific arguments about a complex scientific phenomenon called Albedo Effect. We further examined how identified patterns compare to existing frameworks related to explaining evidence to support claims and attributing sources of uncertainty. LDA was applied to electronically stored arguments written by 2472 students and concerning how decreases in sea ice affect global temperatures. The results indicated that each content topic identified in the explanations by the LDA— “data only,” “reasoning only,” “data and reasoning combined,” “wrong reasoning types,” and “restatement of the claim”—could be interpreted using the claim–evidence–reasoning framework. Similarly, each topic identified in the students’ uncertainty attributions— “self-evaluations,” “personal sources related to knowledge and experience,” and “scientific sources related to reasoning and data”—could be interpreted using the taxonomy of uncertainty attribution. These results indicate that LDA can serve as a tool for content analysis that can discover semantic patterns in students’ scientific argumentation in particular science domains and facilitate teachers’ providing help to students.

  相似文献   

18.
ABSTRACT

One of the central goals of modern science and chemistry education is to develop students’ abilities to understand complex phenomena, and productively engage in explanation, justification, and argumentation. To accomplish this goal, we should better characterise the types of reasoning that we expect students to master in the different scientific disciplines. This analysis is needed to support the design of instructional tasks, teaching strategies, and assessments that foster those ways of thinking. This essay contributes in this direction by characterising the major types of rationales built and applied by experts when analysing chemical systems and processes. The term ‘chemical rationale’ is used to refer to any product of reasoning that uses chemical knowledge to build explanations, justifications or arguments. Three main types of rationales are identified and discussed: Phenomenological, Mechanical, and Structural. Difficulties associated with learning how to build each type of rationale are highlighted, and implications for research and practice of this other chemistry ‘triplet’ are discussed.  相似文献   

19.
This article reports on the outcomes of an intervention in a Swedish school in which the author, a teacher-researcher, sought to develop students' (14–15 years old) ethical reasoning in science through the use of peer discussions about socio-scientific issues. Prior to the student discussions various prompts were used to highlight different aspects of the issues. In addition, students were given time to search for further information themselves. Analysis of students' written arguments, from the beginning of the intervention and afterwards, suggests that many students seem to be moving away from their use of everyday language towards using scientific concepts in their arguments. In addition, they moved from considering cloning and ‘designer babies’ solely in terms of the present to considering them in terms of the future. Furthermore, the students started to approach the issues in additional ways using not only consequentialism but also the approaches of virtue ethics, and rights and duties. Students' progression in ethical reasoning could be related to the characteristics of the interactions in peer discussions as students who critically and constructively argued with each other's ideas, and challenged each other's claims, made progress in more aspects of ethical reasoning than students merely using cumulative talk. As such, the work provides valuable indications for the importance of introducing peer discussions and debates about SSIs in connection to biotechnology into the teaching of science in schools.  相似文献   

20.
The purpose of this qualitative exploratory study was to identify factors that influenced prospective and experienced secondary level science teachers' reasoning as they evaluated or selected tasks to formatively assess their students' understanding of scientific concepts. The analysis of the coded written responses revealed two categories of factors that influenced the teachers' reasoning: (1) characteristics of the task and (2) characteristics of students or the curriculum. Characteristics of the task related to qualities of the task regardless of the learning environment in which it would be used, such as the level of student thinking demanded by a task. Characteristics of the students and the curriculum related to the learning environment in which an assessment task would be implemented, such as students' abilities to complete the task. Both prospective and experienced teachers' task evaluations were influenced by the same factors related to the characteristics of the task, although their interpretations of the meaning of each factor varied. In addition, experienced teachers' task evaluations were more likely than prospective teachers to be influenced by factors related to characteristics of students and the curriculum. The findings are discussed as a conceptual framework that presents the identified factors along three different dimensions: (1) the influence of task, student, and curriculum characteristics, (2) the influence of expectations for success, and (3) the influence of teaching experience. © 2008 Wiley Periodicals, Inc. J Res Sci Teach 45: 1113–1130, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号