首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 511 毫秒
1.
This study, conducted from a constructivist perspective, examined the belief system of a prospective elementary teacher (Barbara) about science teaching and learning as she developed professional knowledge within the context of reflective science teacher education. From an analysis of interviews, observation, and written documents, I constructed a profile of Barbara's beliefs that consisted of three foundational and three dualistic beliefs. Her foundational beliefs concerned (a) the value of science and science teaching, (b) the nature of scientific concepts and goals of science instruction, and (c) control in the science classroom. Barbara held dualistic beliefs about (a) how children learn science, (b) the science students' role, and (c) the science teacher's role. Her dualistic beliefs formed two contradictory nests of beliefs. One nest, grounded in lifelong science learner experiences, reflected a didactic teaching orientation and predominantly guided her practice. The second nest, not well grounded in experience, embraced a hands‐on approach and predominantly guided her vision of practice. The findings accentuate the complexity and nestedness of teachers' belief systems and underscore the significance of identifying prospective teachers' beliefs, espoused and enacted, for designing teacher preparation programs. © 2003 Wiley Periodicals, Inc. J Res Sci Teach 40: 835–868, 2003  相似文献   

2.
To identify links among professional development, teacher knowledge, practice, and student achievement, researchers have called for study designs that allow causal inferences and that examine relationships among features of interventions and multiple outcomes. In a randomized experiment implemented in six states with over 270 elementary teachers and 7,000 students, this project compared three related but systematically varied teacher interventions—Teaching Cases, Looking at Student Work, and Metacognitive Analysis—along with no‐treatment controls. The three courses contained identical science content components, but differed in the ways they incorporated analysis of learner thinking and of teaching, making it possible to measure effects of these features on teacher and student outcomes. Interventions were delivered by staff developers trained to lead the teacher courses in their regions. Each course improved teachers' and students' scores on selected‐response science tests well beyond those of controls, and effects were maintained a year later. Student achievement also improved significantly for English language learners in both the study year and follow‐up, and treatment effects did not differ based on sex or race/ethnicity. However, only Teaching Cases and Looking at Student Work courses improved the accuracy and completeness of students' written justifications of test answers in the follow‐up, and only Teaching Cases had sustained effects on teachers' written justifications. Thus, the content component in common across the three courses had powerful effects on teachers' and students' ability to choose correct test answers, but their ability to explain why answers were correct only improved when the professional development incorporated analysis of student conceptual understandings and implications for instruction; metacognitive analysis of teachers' own learning did not improve student justifications either year. Findings suggest investing in professional development that integrates content learning with analysis of student learning and teaching rather than advanced content or teacher metacognition alone. © 2012 Wiley Periodicals, Inc. J Res Sci Teach 49: 333–362, 2012  相似文献   

3.
The Science Teachers Learning from Lesson Analysis (STeLLA) project is a videobased analysis‐of‐practice PD program aimed at improving teacher and student learning at the upper elementary level. The PD program developed and utilized two “lenses,” a Science Content Storyline Lens and a Student Thinking Lens, to help teachers analyze science teaching and learning and to improve teaching practices in this year‐long program. Participants included 48 teachers (n = 32 experimental, n = 16 control) and 1,490 students. The STeLLA program significantly improved teachers' science content knowledge and their ability to analyze science teaching. Notably, the STeLLA teachers further increased their classroom use of science teaching strategies associated with both lenses while their students increased their science content knowledge. Multi‐level HLM analyses linked higher average gains in student learning with teachers' science content knowledge, teachers' pedagogical content knowledge about student thinking, and teaching practices aimed at improving the coherence of the science content storyline. This paper highlights the importance of the science content storyline in the STeLLA program and discusses its potential significance in science teaching and professional development more broadly. © 2011 Wiley Periodicals, Inc., J Res Sci Teach 48: 117–148, 2011  相似文献   

4.
We came to this study with a set of beliefs about good science teaching that had been heavily influenced by the constructivist literature of the past decade. In this article we reexamine some of our own assumptions about good teaching by exploring the classroom practices of an experienced physics teacher. This teacher did not fit the mold of the constructivist teacher and, yet, there was much to suggest that he was meeting the needs of the students in his class. His methods were almost entirely whole class—focusing mainly on physics content, examination technique and algorithm practice. Our close observation of this teacher in his Grade 11 classroom over several months suggests an alternative framework for examining his work. We examine this framework through a number of themes: teacher confidence, the structure of the discipline, student motivation, trust, and the cultural context of learning. We argue for a broader view of good science teaching than that proposed by the constructivist literature, one that takes into account teachers' and students' understandings of science in relation to their social and cultural contexts.  相似文献   

5.
Pre‐service teachers face many challenges as they learn to teach in ways that are different from their own educational experiences. Pre‐service teachers often enter teacher education courses with pre‐conceptions about teaching and learning that may or may not be consistent with contemporary learning theory. To build on preservice teachers' prior knowledge, we need to identify the types of views they have when entering teacher education courses and the views they develop throughout these courses. The study reported here focuses specifically on preservice teachers' views of their own students' prior knowledge and the implications these views have on their understanding of the formative assessment process. Sixty‐one preservice teachers were studied from three sections of a science methods course. Results indicate that preservice teachers exhibited a limited number of views about students' prior knowledge. These views tended to privilege either academic or experience‐based concepts for different aspects of formative assessment, in contrast to contemporary perspectives on teaching for understanding. Rather than considering these views as misconceptions, it is argued that it is more useful to consider them as resources for further development of a more flexible concept of formative assessment. Four common views are discussed in detail and applied to science teacher education. © 2008 Wiley Periodicals, Inc. J Res Sci Teach 45: 497–523, 2008  相似文献   

6.
7.
Analogies have been argued to be central in the process of establishing conceptual growth, making overt connections and carryover into an intended cognitive domain, and providing a generative venue for developing conceptual understanding inherent in constructivist learning. However, students' specific uses of analogies for constructing arguments are not well understood. Specifically, the results of preservice teachers' knowledge gains are not widely studied. Although we would hope that engaging preservice science teachers in exemplary lessons would assist them in using and generating analogies more expertly, it is not clear whether or how such curricula would affect their learning or teaching. This study presents an existence proof of how preservice science teachers used analogies embedded in their course materials Physics by Inquiry. This fine‐grained analysis of small group discourse revealed three distinct roles of analogies including the development of: (a) cognitive process skills, (b) scientific conceptual understanding, and (c) social contexts for problem solving. Results suggest that preservice teachers tend to overgeneralize the analogies inserted by curriculum materials, map irrelevant features of analogies into collaborative problem solving, and generate personal analogies, which counter scientific concept development. Although the authors agree with the importance of collaborative problem solving and the insertion of analogies for preservice teachers' conceptual development, we believe much more needs to be understood before teachers can be expected to construct and sustain effective learning environments that rely on using analogies expertly. Implications for teacher preparation are also discussed. © 2003 Wiley Periodicals, Inc. J Res Sci Teach 40: 443–463, 2003  相似文献   

8.
9.
Grade 10 students' perceptions of classroom practices and activities, as well as their attitudes toward science teaching and school science, were assessed in the Westend School District (pseudonym) in British Columbia, using both quantitative (statistics of Likert-type scales) and qualitative (critical interpretive analysis of interview data) methods. The major findings of the study were that students do not appreciate the most prevailing contemporary practices in science classes, perceived by them as mainly the copying of the teacher's notes, and that they prefer science teaching and learning in which they take an active and responsible part. Additionally, teaching style appears to be the major determinant of high school students' attitudes toward science and science teaching. No change in students' perceptions of and attitudes toward science teaching and school science (in 1989 compared with 1986) could be detected in spite of the impact made by the recently advocated constructivist and science-technology-society (STS) approaches on science curriculum and science education. It is argued, therefore, that more emphasis must be placed on the science teachers' role and their teaching style if an educational change in the constructivist/STS direction is to be achieved.  相似文献   

10.
Attaining the vision for science teaching and learning emphasized in the Framework for K‐12 Science Education and the next generation science standards (NGSS) will require major shifts in teaching practices in many science classrooms. As NGSS‐inspired cognitively demanding tasks begin to appear in more and more science classrooms, facilitating students' engagement in high‐level thinking as they work on these tasks will become an increasingly important instructional challenge to address. This study reports findings from a video‐based professional development effort (i.e., professional development [PD] that use video‐clips of instruction as the main artifact of practice to support teacher learning) to support teachers' learning to select cognitively demanding tasks and to support students' learning during the enactment of these tasks in ways that are aligned with the NGSS vision. Particularly, we focused on the NGSS's charge to get students to make sense of and deeply think about scientific ideas as students try to explain phenomena. Analyses of teachers' pre‐ and post‐PD instruction indicate that PD‐participants began to adopt instructional practices associated with facilitating these kinds of student thinking in their own classrooms. The study has implications for the design of video‐based professional development for science teachers who are learning to facilitate the NGSS vision in science classrooms.  相似文献   

11.
The purpose of this study was to examine the ways in which elementary teachers applied their understanding of conceptual learning and teaching to their instructional practices as they became knowledgeable about conceptual change pedagogy. Teachers' various ways to interpret and utilize students' prior ideas were analyzed in both epistemological and ontological dimensions of learning. A total of 14 in‐service elementary teachers conducted an 8‐week‐long inquiry into students' conceptual learning as a professional development course project. Major data sources included the teachers' reports on their students' prior ideas, lesson plans with justifications, student performance artifacts, video‐recorded teaching episodes, and final reports on their analyses of student learning. The findings demonstrated three epistemologically distinct ways the teachers interpreted and utilized students' prior ideas. These supported Kinchin's epistemological categories of perspectives on teaching including positivist, misconceptions, and systems views. On the basis of Chi's and Thagard's theories of conceptual change, the teachers' ontological understanding of conceptual learning was differentiated in two ways. Some teachers taught a unit to change the ontological nature of student ideas, whereas the others taught a unit within the same ontological categories of student ideas. The findings about teachers' various ways of utilizing students' prior ideas in their instructional practices suggested a number of topics to be addressed in science teacher education such as methods of utilizing students' cognitive resources, strategies for purposeful use of counter‐evidence, and understanding of ontological demands of learning. Future research questions were suggested. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 44: 1292–1317, 2007  相似文献   

12.

This article reports a study of the knowledge of experienced science teachers in the context of a reform in science education in The Netherlands. The study focused on a major goal of the reform, that is, improving students' knowledge and abilities in the field of models and modelling in science. First, seven teachers of biology and chemistry were interviewed about the teaching and learning of models and modelling in science. Next, a questionnaire was designed consisting of 30 items on a Likert-type scale. This questionnaire was completed by a group ( n = 74) of teachers of biology, chemistry and physics. Results indicated that the teachers could be grouped in two subgroups, who differed in terms of their self-reported use of teaching activities focusing on models: one sub-group applied such activities substantially more often than the other sub-group. This distinction appeared not to be related to the teachers' subject, or teaching experience. Moreover, the use of teaching activities seemed only loosely related to the teachers' knowledge of their students, particularly, students' views of models and modelling abilities. Implications for the design of teacher education are discussed.  相似文献   

13.
This study identifies proficiency levels in pre-service physics teachers' pedagogical content knowledge (PCK) and reveals how teacher education can promote transitions into higher proficiency. Teacher education plays a fundamental role in supporting pre-service teachers' PCK development. Proficiency levels are a powerful source when evaluating this PCK development because they characterize what learners are likely to be able to know on a specific level. Previous research has presented a model of proficiency levels in pre-service physics teachers' PCK; however, evidence for the model's validity is still lacking. According to the Refined Consensus Model of PCK, factors such as teachers' content knowledge (CK), their teaching experience, and their beliefs about teaching and learning science promote PCK development. Thus, understanding how and when pre-service physics teachers' CK, teaching experience, and beliefs contribute to their proficiency can bring insights into how teacher education can promote PCK development. To address this issue, N = 427 observations of pre-service physics teachers were analyzed. Utilizing the scale anchoring procedure, four different proficiency levels in pre-service physics teachers' PCK were identified. Analyzing these proficiency levels showed that lower levels can be characterized as remembering content-unspecific knowledge, whereas higher levels encompass content-specific strategies to structure and elaborate lessons. Additionally, logistic regression models revealed that pre-service physics teachers' CK is crucial for an increase in PCK proficiency. However, transitions into higher levels of PCK additionally require teaching experience and adequate beliefs about teaching and learning. Thus, our proficiency levels can be used to bring insights into how proficiency in PCK can be supported during teacher education. For example, teacher education should provide courses focusing on the science curriculum and the assessment of student learning to promote pre-service physics teachers' progression in PCK.  相似文献   

14.
This paper describes the findings of a 3 year research project on teacher development in which some New Zealand teachers of science were developing their teaching to take into account students' thinking and constructivist views of learning. The main finding was that the teacher development involved professional, personal, and social development. These three aspects are discussed in an overview.  相似文献   

15.
16.
Adapted primary literature (APL) refers to an educational genre specifically designed to enable the use of research articles for learning biology in high school. The present investigation focuses on the paedagogical content knowledge (PCK) of four high‐school biology teachers who enacted an APL‐based curriculum in biotechnology. Using a constructivist qualitative research approach, we analysed those teachers' aims and beliefs, the instructional strategies they used during the enactment of the curriculum, as well as the outcomes of the enactment as perceived by the teachers and their students, and as reflected in the class observations. Some of the teachers' strategies applied during the enactment, such as the conversational model, were specifically designed for teaching APL‐based curricula. We found that the instructional strategies applied for the adapted articles were associated with cognitive and affective engagement, active learning, inquiry thinking, and understanding of the nature of science. Suitable teacher PCK promoted learning by inquiry in addition to learning on inquiry. Students' challenges were mainly linked to the comprehension of complex, multi‐stage, biotechnological processes and methods that are abundant throughout the curriculum and required the use of previous knowledge in new contexts. A complex interaction of factors, namely teachers' PCK, the APL genre, and the biotechnology content of the curriculum, shaped the instructional strategies of the new curriculum and the outcomes of its enactment  相似文献   

17.
Fostering students' spatial thinking skills holds great promise for improving Science, Technology, Engineering, and Mathematics (STEM) education. Recent efforts have focused on the development of classroom interventions to build students' spatial skills, yet these interventions will be implemented by teachers, and their beliefs and perceptions about spatial thinking influence the effectiveness of such interventions. However, our understanding of elementary school teachers' beliefs and perceptions around spatial thinking and STEM is in its infancy. Thus, we created novel measures to survey elementary teachers' anxiety in solving spatial problems, beliefs in the importance of spatial thinking skills for students' academic success, and self-efficacy in cultivating students' spatial skills during science instruction. All measures exhibited high internal consistency and showed that elementary teachers experience low anxiety when solving spatial problems and feel strongly that their skills can improve with practice. Teachers were able to identify educational problems that rely on spatial problem-solving and believed that spatial skills are more important for older compared to younger students. Despite reporting high efficacy in their general teaching and science teaching, teachers reported significantly lower efficacy in their capacities to cultivate students' spatial skills during science instruction. Results were fairly consistent across teacher characteristics (e.g., years of experience and teaching role as generalist or specialist) with the exception that only years of teaching science was related to teachers' efficacy in cultivating students' spatial thinking skills during science instruction. Results are discussed within the broader context of teacher beliefs, self-efficacy, and implications for professional development research.  相似文献   

18.
This paper looks at the effect of instruction on pre-service science teachers' conceptions of the scientist. Twenty-six pre-service science teachers involved in a 14-week course were the subjects. The constructivist teaching approach was adopted. The students' preconceptions were the starting point for the teaching. Seven students were selected for in-depth interview to determine the reasons for their positions (change or no change in view at the end of the period). It was found that instruction enhanced better conceptions of the scientist. The pre-test to post-test change scores differed from zero and the difference was significant at the 0·05 level of significance. However, the interview revealed that the changes in conceptions were mediated by the students' life worldviews. We therefore conclude that whereas remediating strategies enhance understanding (comprehension), worldview of the students has a greater effect on meaningful learning (apprehension).  相似文献   

19.
20.
This article is a study of a South African teacher educator's interpretations and approaches to implementing a constructivist approach to teaching. It examines his beliefs about teaching physical science to prospective teachers as it relates to his aligning his teaching with the new reform: outcomes-based education. The goals of the reform include emphasis on cooperative learning, a student-centered approach, and focus on teaching for conceptual understanding. Through observations, interviews, and documents (assignments for students, graded group assignments, and course outlines), I examined this teacher educator's interpretations and approaches to implementing constructivist curriculum and his understanding of the reform. The findings show that without confronting teachers' beliefs about teaching and learning, providing clear meaning of reforms, and facilitating in-depth professional development, the interpretation and implementation of reforms will be hindered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号