首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cognitive development of any concept is related with affective development. The present study investigates students’ beliefs about the use of different types of representation in understanding the concept of fractions and their self‐efficacy beliefs about their ability to transfer information between different types of representation, in relation to their performance on understanding the concept. Data were collected from 1701 students in Grade Five to Grade Eight. Results revealed that multiple‐representation flexibility, ability on solving problems with various modes of representation, beliefs about the use of representations and self‐efficacy beliefs about using them constructed an integrated model with strong interrelations in the different educational levels. Confirmatory factor analysis affirmed the existence of differential effects of multiple‐representation flexibility and problem‐solving ability in respect to cognitive performance and the existence of general beliefs and self‐efficacy beliefs about the use and the role of representations. Results suggested the invariance of this structure across primary (Grades Five and Six) and secondary education (Grades Seven and Eight). However, there are interesting differences concerning the interrelations among those cognitive and affective factors between primary and secondary education.  相似文献   

2.
The present study examined the reasoning strategies and arguments given by pre-service school teachers as they solved two problems regarding fractions in different symbolic representations. In the first problem, the pre-service school teachers were asked to compare between two different fractions having the same numerical representation, and in the second problem, they were asked to compare between different notational representations of the same fraction. Numeration systems in bases other than ten were used to generate various representations of fractions. All students were asked to provide justifications to their responses. Strategies and arguments relative to pre-service teachers' concepts of fractions and place value were identified and analyzed based on results of 38 individual clinical interviews, and written responses of 124 students. It was found that the majority of students believe that fractions change their numerical value under different symbolic representations.  相似文献   

3.
Recent research on the phenomenon of improper proportional reasoning focused on students’ understanding of elementary functions and their external representations. So far, the role of basic function properties in students’ concept images of functions remained unclear. We add to this research line by investigating how accurate students are in connecting functions to their corresponding properties and how this accuracy depends on function types and representations. A large group of 10th graders evaluated for different function types, represented in either a graphical, a formulaic, or a tabular mode, the correctness of statements about their general properties and behavior. Results show that students succeeded rather well in making the right connections between properties and functions. Errors depended not only on the type of function for which the properties were evaluated but also on the kind of representation in which the function was presented. These results highlight the importance of function properties in students’ concept images of functions and suggest positive effects of making these properties explicit to students.  相似文献   

4.
The purpose of this study was to investigate students' use of visual imagery while solving mathematical problems. Students with learning disabilities (LD), average achievers, and gifted students in sixth grade (N= 66) participated in this study. Students were assessed on measures of mathematical problem solving and visual‐spatial representation. Visual‐spatial representations were coded as either primarily schematic representations that encode the spatial relations described in the problem or primarily pictorial representations that encode persons, places, or things described in the problem. Results indicated that gifted students used significantly more visual‐spatial representations than the other two groups. Students with LD used significantly more pictorial representations than their peers. Successful mathematical problem solving was positively correlated with use of schematic representations; conversely, it was negatively correlated with use of pictorial representations.  相似文献   

5.
将多元表征渗透到数学课堂教学中,一方面可以调动学生多感官的认知因素,促进知识的理解,培养学生的数学思维以及促进学生数学智慧的生长;另一方面通过对问题进行多元化的表征,为学生解决数学问题提供了新的平台,从而有助于提高学生对问题多角度的解释能力和创新能力。数学中多元表征的教学策略为:精深挖掘资源,探索数学表征的多元化;运用教育机智,达到多元表征的最优化。但要注意,多元表征不是每堂课都适用,也不是每个学生都能在课上得到最大的收获。  相似文献   

6.

Thought experiments are tools often used by physicists. Learning authentic physics then also means that students need to develop a familiarity with the reasoning processes of thought experiments. This study examines the nature of learning processes that involve communication about image‐based micro‐worlds in optics. The results of this study show that students’ investigations often have the structure of thought experiments. Thought experiments that use computer‐based microworlds are powerful because they capitalize on the human capability for imagery that allow learners to ‘see’ the physical processes and construct qualitative understandings. In this study, the structure of students’ activities as thought experiments arose from their collective efforts which started with the construction of an optics simulation. In the course of the activities, students’ understanding evolved from fragmented views of optical situations to system views that included multiple components. Collaborative thought experiments are therefore emergent phenomena, triggered by the events as a whole rather than being pre‐designed. In the course of the activities, students who participated in collective problem solving gradually adopted shared graphical representations and meanings.  相似文献   

7.
Chemistry is commonly portrayed at three different levels of representation – macroscopic, submicroscopic and symbolic – that combine to enrich the explanations of chemical concepts. In this article, we examine the use of submicroscopic and symbolic representations in chemical explanations and ascertain how they provide meaning. Of specific interest is the development of students' levels of understanding, conceived as instrumental (knowing how) and relational (knowing why) understanding, as a result of regular Grade 11 chemistry lessons using analogical, anthropomorphic, relational, problem‐based, and model‐based explanations. Examples of both teachers' and students' dialogue are used to illustrate how submicroscopic and symbolic representations are manifested in their explanations of observed chemical phenomena. The data in this research indicated that effective learning at a relational level of understanding requires simultaneous use of submicroscopic and symbolic representations in chemical explanations. Representations are used to help the learner learn; however, the research findings showed that students do not always understand the role of the representation that is assumed by the teacher.  相似文献   

8.
While genetics has remained as one key topic in school science, it continues to be conceptually and linguistically difficult for students with the concomitant debates as to what should be taught in the age of biotechnology. This article documents the development and implementation of a two‐tier multiple‐choice instrument for diagnosing grades 10 and 12 students’ understanding of genetics in terms of reasoning. The pretest and posttest forms of the diagnostic instrument were used alongside other methods in evaluating students’ understanding of genetics in a case‐based qualitative study on teaching and learning with multiple representations in three Western Australian secondary schools. Previous studies have shown that a two‐tier diagnostic instrument is useful in probing students’ understanding or misunderstanding of scientific concepts and ideas. The diagnostic instrument in this study was designed and then progressively refined, improved, and implemented to evaluate student understanding of genetics in three case schools. The final version of the instrument had Cronbach’s alpha reliability of 0.75 and 0.64, respectively, for its pretest and the posttest forms when it was administered to a group of grade 12 students (n = 17). This two‐tier diagnostic instrument complemented other qualitative data collection methods in this research in generating a more holistic picture of student conceptual learning of genetics in terms of scientific reasoning. Implications of the findings of this study using the diagnostic instrument are discussed.  相似文献   

9.
There is growing research interest in the challenges and opportunities learners face in representing scientific understandings, processes and reasoning. These challenges include integrating verbal, visual and mathematical modes in science discourse to make strong conceptual links between representations and classroom experiences. Our paper reports on a project that aimed to identify practical and theoretical issues entailed in a representation-intensive approach to guiding students’ conceptual learning in science. We focus here on a teacher developing students’ understanding of the formation of ions and molecules. We argue that the representations produced by students in this process met the criteria for representational competence proposed by diSessa (Cognition and Instruction, 22, 293–331, 2004) and Kozma & Russell (2005). The students understood that an effective representation needed to show relevant information, focus on pertinent points, be self-sufficient in its claims about the topic and provide coherent links between different parts of the representation. The final activity showed that their representations reached Kozma & Russell’s (2005) highest level of competence, where the students were able to use specific features of their representations to critique their suitability for explaining bonding and were able to show how their representation linked to the periodic table as a representation. We conclude by considering the implications of these findings.  相似文献   

10.
We applied a mixed‐method research design to investigate the patterns of reasoning used by novice undergraduate chemistry students to classify chemical substances as elements, compounds, or mixtures based on their particulate representations. We were interested in the identification of the representational features that students use to build a classification system, and in the characterization of the thinking processes that they follow to group substances in different classes. Students in our study used structural and chemical composition features to classify chemical substances into elements, compounds, and mixtures. Many of the students’ classification errors resulted from strong mental associations between concepts (e.g., atom–element, molecule–compound) or from lack of conceptual differentiation (e.g., compound–mixture). Strong concept associations led novice students to reduce the number of relevant features used to differentiate between substances, while the inability to discriminate between two concepts (conceptual undifferentiation) led them to pay too much attention to irrelevant features during the classification tasks. Comparisons of the responses to classification tasks of students with different levels of expertise in chemistry indicate that some of these naïve patterns of reasoning may be strengthened by, rather than weakened by, training in the discipline.  相似文献   

11.
Proportional reasoning is the basis for most medication calculation processes and is fundamental for high-quality care and patient safety. We designed a simulated Medication Mathematics (siMMath) environment to support proportional reasoning in transitioning via concreteness fading between two mediators. The first mediator is simulated nursing tools of medication preparation. The second is a ratio-table setup which is used as a goal representation, which enables one to spatially hold in place different quantities in their relative proportion. We conducted a two-part study with nursing students. Part 1 was a quasi-experimental pretest–intervention–posttest design assessing the effectiveness of learning, by evaluating four categories of medical calculation questionnaire items (solid medications, unit conversion, concentrations, infusion rates). We used the Noelting proportional reasoning test to evaluate the generalizability and abstraction of proportional reasoning. Part 1 included an experimental group (n = 96) learning with siMMath, and a comparison group (n = 73) learning with an equation-based lecture approach. Part 2 employed a case study design to characterize the learning process. The experimental group’s learning gains were significantly higher than the comparison group’s for the two most challenging categories of the medication calculation problems questionnaire, namely concentrations and infusion rates. Furthermore, the experimental group’s learning gains were significantly higher than the comparison group’s for formal operational reasoning on the Noelting test. Students who used a ratio-table setup scored significantly higher on the Noelting posttest questionnaire. Nursing students who learned with the siMMath environment overcame difficulties in proportional reasoning to the highest levels and extended this understanding to other contexts.  相似文献   

12.
This article explores the conceptual change of students in Grades 10 and 12 in three Australian senior high schools when the teachers included computer multimedia to a greater or lesser extent in their teaching of a genetics course. The study, underpinned by a multidimensional conceptual‐change framework, used an interpretive approach and a case‐based design with multiple data collection methods. Over 4–8 weeks, the students learned genetics in classroom lessons that included BioLogica activities, which feature multiple representations. Results of the online tests and interview tasks revealed that most students improved their understanding of genetics as evidenced in the development of genetics reasoning. However, using Thorley's (1990) status analysis categories, a cross‐case analysis of the gene conceptions of 9 of the 26 students interviewed indicated that only 4 students' postinstructional conceptions were intelligible–plausible–fruitful. Students' conceptual change was consistent with classroom teaching and learning. Findings suggested that multiple representations supported conceptual understanding of genetics but not in all students. It was also shown that status can be a viable hallmark enabling researchers to identify students' conceptual change that would otherwise be less accessible. Thorley's method for analyzing conceptual status is discussed. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 44: 205–235, 2007  相似文献   

13.
While the value of ‘schematic representations’ in problem solving requires no further demonstration, the way in which students should be taught how to construct these representations invariably gives rise to various debates. This study, conducted on 146 grade 4 students in Luxembourg, analyzes the effect of two types of ‘schematic representation’ (diagrams vs. schematic drawings) on the solving of arithmetical problems. The results show that the presence of schematic representations has a clear positive effect on overall student performance and that a non negligible proportion of students manage to reuse the representations encountered in order to solve new problems. While showing an effect slightly in favor of diagrams as opposed to schematic drawings, our results do not really permit us to draw any conclusions about the form that these representations should take, in particular since a differential effect was observed depending on the type of problem.  相似文献   

14.
Recognising critical reasoning and problem-solving as one of the key skills for twenty-first century citizenship, various types of problem contexts have been practiced in science classrooms to enhance students’ understandings and use of evidence-based thinking and justification. Good problems need to allow students to adapt and evaluate the effectiveness of their knowledge, reasoning and problem-solving strategies. When students are engaged in complex and open-ended problem tasks, it is assumed their reasoning and problem-solving paths become complex with creativity and evidence in order to justify their conclusion and solutions. This study investigated the levels of reasoning evident in student discourse when engaging in different types of problem-solving tasks and the role of teacher interactions on students’ reasoning. Fifteen students and a classroom teacher in a Grade 5–6 classroom participated in this study. Through case analyses, the study findings suggest that (a) there was no clear co-relation between certain structures of problem tasks and the level of reasoning in students’ problem-solving discourse, (b) students exhibited more data-based reasoning than evidence-based and rule-based justification in experiment-based problem-solving tasks, and (c) teacher intervention supported higher levels of student reasoning. Pedagogical reflections on the difficulties of constructing effective problem-solving tasks and the need for developing teacher scaffolding strategies are discussed.  相似文献   

15.
Recent research into children’s conceptual representation-much of it based on the so-called ‘triads’ task-has created a number of issues such as the age at which children become capable of representation at the superordinate level; the relative prominence of taxonomic, perceptual or thematic relations as the basis of representation; and the range of categories to which these different representations apply at different ages. In the study reported in this paper we presented children of three different ages with three types of triads designed to assess children’s sensitivity to these different relations separately across ten common superordinate categories. The approach which allowed us to track preferences for perceptual, thematic and taxonomic relations simultaneously across the three age groups showed an increase in sensitivity to both thematic and taxonomic relations with age. We conclude by suggesting that these relations are part of a common representation based on patterns of covariation within (static taxonomic relations) and across (event relations) time.  相似文献   

16.
The present study assessed the behavioral and the reasoning performances of 507 school and university students on the four logical principles of logical detachment, particular conversion, particular inversion, and particular contraposition. An adapted version of Wason's four-card problem was administered to all students in paper-and-pencil format and in group settings. Students were asked to respond to the logical questions and to justify their answers. Nine logical reasoning categories were identified. The results of behavioral and reasoning performances were compared across grade levels. Results indicated that many students who responded behaviorally correctly to the logical questions, provided incorrect reasoning justifications. The percentages of students who considered a conditional statement as hypothetical increased with age. No sex differences on the behavioral and the reasoning performances were reported.  相似文献   

17.
The purpose of this study was to investigate the effects of representation sequences and spatial ability on students’ scientific understandings about the mechanism of breathing in human beings. 130 seventh graders were assigned to two groups with different sequential combinations of static and dynamic representations: SD group (i.e., viewing static representations and then dynamic ones), and DS group (i.e., viewing dynamic representations and then static ones). Among them, 16 students (8 from each group) with different levels of prior knowledge and spatial ability were interviewed. Data sources included a spatial ability test, pre- and post-tests of scientific understandings (involving factual, conceptual, and spatial knowledge), and semi-structured interviews. The statistical results indicated that the SD sequence helped students gain significantly more factual knowledge. The significant interaction effects further suggested that while the representation sequences had no effect on students with low spatial ability, high spatial ability students in the SD group outperformed than their counterparts in DS group on the items of the conceptual and spatial knowledge. Additionally, the analysis of interviews indicated that the representation sequences could affect the foci of students’ explanations and shape their perceptions about the representations. The results suggested interplays among representation sequences, spatial ability, and students’ understandings, and provided insight into the design and arrangement of multiple representations for science learning.  相似文献   

18.
This study examines students’ use of proportional reasoning in high school physics problem‐solving in a West African school setting. An in‐depth, constructivist, and interpretive case study was carried out with six physics students from a co‐educational senior secondary school in Nigeria over a period of five months. The study aimed to elicit students’ meanings, claims, concerns, constructions, and interpretations of their difficulty with proportional reasoning as they worked on a series of 18 high school physics tasks. Multiple qualitative research techniques were employed to generate, analyse, and interpret data. Results indicated that several socio‐cultural, psychosocial, cognitive, and mathematical issues were associated with students’ use of proportional reasoning in physics. Students’ capacity to reason proportionally was not only linked to their difficulty with the concept, structure, and strategies of proportional reasoning as a learning and problem‐solving skill, but was also embedded in the social, cultural, cognitive, and contextual elements involved in the learning of physics. The study concludes with a discussion of the implications for teaching high school physics.  相似文献   

19.
This study reports an adaptive digital learning project, Scientific Concept Construction and Reconstruction (SCCR), and examines its effects on 108 8th grade students' scientific reasoning and conceptual change through mixed methods. A one‐group pre‐, post‐, and retention quasi‐experimental design was used in the study. All students received tests for Atomic Achievement, Scientific Reasoning, and Atomic Dependent Reasoning before, 1 week after, and 8 weeks after learning. A total of 18 students, six from each class, were each interviewed for 1 hour before, immediately after, and 2 months after learning. A flow map was used to provide a sequential representation of the flow of students' scientific narrative elicited from the interviews, and to further analyze the level of scientific reasoning and conceptual change. Results show students' concepts of atoms, scientific reasoning, and conceptual change made progress, which is consistent with the interviewing results regarding the level of scientific reasoning and quantity of conceptual change. This study demonstrated that students' conceptual change and scientific reasoning could be improved through the SCCR learning project. Moreover, regression results indicated students' scientific reasoning contributed more to their conceptual change than to the concepts students held immediately after learning. It implies that scientific reasoning was pivotal for conceptual change and prompted students to make associations among new mental sets and existing hierarchical structure‐based memory. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 47: 91–119, 2010  相似文献   

20.
This study investigates how 25 junior high school students employed their bodies of knowledge and responded to problem cues while individually performing a science experiment and reasoning about a drops phenomenon. Line‐by‐line content analysis conducted on students' written ad hoc explanations aimed to reveal students' concepts and their relations within their explanations, and to construe students' mental models for the science phenomenon based on level of specification, models' correspondence with scientific claims, macro versus micro view of matter, and type of evidence used. We then inferred four types of knowledge representations for the nature of matter. Findings are discussed in terms of implications for science teaching. © 2004 Wiley Periodicals, Inc. J Res Sci Teach 41: 970–993, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号