首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一、用矩阵分解多项式的一次因式:定理:n次多项式f(x)=a_0x~n+a_1x~(n-1)…+a_n在数域R中有一次因式的充要条件是存在一个秩为1的2×n阶矩阵A=(a_0 a_(11) a_(21)……a_(n-2.1) a_(n-1.1) (a_(12) a_(22) a_(32)……a_(n-1.2) a_n)  相似文献   

2.
多项式理论是高等代数的重要内容之一,在研究有理系数多项式的因式分解时,有下述定理:设f(x)=a_nx~n+a_(n-1)x~(n-1)+……+a_1x+a_0是n次整(数)系数多项式,如果有一个素数P,使:  相似文献   

3.
思考题(九)     
题31.已知一个 n 次多项式f(x)=a_0x~n+a_2x~(n-1)+a_2x~(n-2)+…+a_n,其中 a_0,a_1,…,a_n 都是整数,且 a_0≠0.又已知用 x-a、x-b、x-c、x-d(这里a、b、c、d 是各不相等的整数)分别除f(x)的余数都是2,求证对于任何整数 x,f(x)的值不能等于3、5、7、9中的任何一个数。(杨绶)题32.求方程 y~3-y=x~3+3x~2+2x 的全部自然数解。题33.在平面上有五点 A、B、P、Q、R,A、B 为定点,P、Q、R 为动点。其中  相似文献   

4.
多项式有一个重要的定理: 如果使多项式f(x)=a_0x~n+a_1x~(n-1)+…+a.的值为零的不同x值(在复数域内)多于n个,那么a_0=a_1=…=a_n=0。(即f(x)≡0) 这个定理很有用。下面我们只就它的最  相似文献   

5.
本文拟将一代数定理的应用介绍如下,供同学们参考 [定理] 已知a_0+a_1+a_2+……+a_(n-1)+a_n=0,求证:一元n次方程a_0x~n+a_1x~(n-1)+a_2x~(n-2)+……+a_(n-1)x+a_n=0(a_0≠0)有一个根为1。证明:(略)下面谈一下这个定理的应用: [例1] 已知方程(m+1)(x~2-x)=(m-1)·(x-1)的两根绝对值相等而符号相反,求m的值。解:原方程变形为(m+1)x~2-2mx+(m-1)=0,由题设知m+1≠0,但m+1-2m+m-1=0,∴此方程有一个根为1。而原方程两根绝对值相等、符  相似文献   

6.
多项式这一概念,应如何理解?北大编《高等代数》是这样定义的:设x是一个符号(或称文字),n是一个非负整数。形式表达式 a_nx~n+a_(n-1)x~(n-1)+…+a_1x+a_0 (1)其中a_0,a_1,…,a_n全属于数域P~*,称为系数在数域P中的一元多项式,或者简称为数域P上的一元多项式。既然x是一个符号,因此x,x~2,…,x~n以及式子a_nx~n,a_(n-1)x~(n-1),…,a_1x与连接这些式子的符号“+”,都应看作没有赋予  相似文献   

7.
问代数基本定理的内容是什么? 答代数基本定理的内容是:每一个复数域上n次代数方程 f(x)=a_0x~n+a_1x~(n-1)+…+a_(n-1)x+a_n=0(a_0≠0,n≥1) (1)在复数域中至少有一个根。问它有哪些重要推论? 答它的重要推论有  相似文献   

8.
1559年,法国数学家韦达提出一个关于一元n次方程根与系数关系的定理:设方程a_0x~n+a_1x~(n-1)+a_2x~(n-2)…+a_(n-1)x+a_n=0的n个根为x_1,x_2,…,x_n,那么x_1+x_2+…+x_n=-(a_1)/(a_0)x_1x_2+x_1x_3+…+x_1x_0+…+x_(n-1)x_n=(a_2)/(a_0)  相似文献   

9.
在本文中(1)证明了参考文献[2]与[3]中所定义的两类广义正定矩阵的逆仍是同种类型的广义正定矩阵;(2)给出了参考文献[2]中广义正定矩阵的行列式满足如下不等式|A|≤a_(n n)P_(n-1)这里P_(n-1)是A的n-1阶顺序主子式.进一步有|A|≤a_(n n)a_(n-1 n-1)…a_(22)a_(11)  相似文献   

10.
韦达(Vieta)定理揭示了一元n次方程的根和系数的关系,在数学中有着广泛的应用.它的一般表法是: 如果一元n次方程 a_0x~n+a_1x~(n-1)+…+a_(n-1)x+a_n=0的根  相似文献   

11.
1 问题已知数阵 A_0={a_(ij(0))={a_(ij)},a_(ij)∈C.设A_n={a_(ij)(n)):a_(ij)(n)=a_(ij)(n-1)+a_(i,j+1)(n-1)+a_(a_(i+1),j)(n-1)+a_(i+1,j+1)(n-1),i,j=1,2,3,…,①则 A_n 叫做 A_0的 n 次迭代数阵.问题在于:已知 A_0,求 A_n 的通项公式.  相似文献   

12.
<正>求数列通项在高考中属于常考内容,本文归纳整理了几种方法,供参考.一、已知a_1和a_n=a_(n-1)+f(n)型,其中f(n)可求和例1已知数列{a_n}满足a_(n+1)=a_n+3n+2,且a_1=2,求a_n.解由a_(n+1)=a_n+3n+2知a_(n+1)-a_n=3n+2,a_n-a_(n-1)=3n-1.a_n=(a_n-a_(n-1))+(a_(n-1)-a_(n-2))+…+(a_2-a_1)+a_1=(3n-1)+(3n-4)+……+5+2  相似文献   

13.
数是代数武的特殊情形,而代数式则是数的延续、扩张和发展.我认为利用x=10时(x)的值去寻求形如 f(x)=a_nx~n+a_(n-1)x~(n-1)+…+a_1x+a_0的有理整式的因式是完全可能的. 例1.将多项式x~8+x~7+1分解因式. 解设x=10,则 x~8+x~7+1=10~8+10~7+1 =110000001 =3×37×990991. 这三个数均为质数.再用x=10代回,那么,3必然是x-7,37必是3x+7或4x-3.  相似文献   

14.
三、C(s~m,r)数的三组求和公式引理1.任一和式f(x)=∑a_kx~k,记w为1的n次根 (w=cos(2π)/n+isin(2π)/n-e~(i(2π)/n)), 则对任二整数n>k≥0,有 a_kx~k+a_(k+u)x~(k+k)+a_(k+2n)x~(k+2n)+… =(1/n)sum from j=0 to n-1 (w~(-jk)·f(w~j,x).(A)  相似文献   

15.
我们知道一n次方程的韦达定理是,方程a_0s~n+a_1x~(n-1)+……+a_n=0,(a_0≠0)有n个根x_1、x_2、……x_n的充要条件是  相似文献   

16.
本文先给出牛顿公式,并利用求函数的导数与多项式的比较系数法加以证明,再举例说明它在初等代数中的应用.一、公式及其证明当K≤n时,S_k-S_(k-1σ1)+S_(k-2σ2)+…+(-1)~(k-1)S_(1σk-1)+(-1)~k·K_(σk)=0(l)当K>n时,S_k-S_(k-1σl)+S_(k-2σ2)+…+(-1)~nS_(k-nσn)=0(2)其中σ_i(i=1,2,…,n)是初等对称多项式,即σ_i=X_1+X_2+…+X_n,σ_2=x_1X_2+X_2X_3+…+X_(n-1)X_n,…,σ_n=X_1X_2…X_nS_k(K=0,l,2,…)是一类特殊的对称多项式,即S_k=x_1~k+x_2~k+…+X_n~k(S_0=n)证明:令f(x)=(x-x_1)(x-x_2)…(x-x_n)=x~n-σ_1x~(n-1)+σ_2x~(n-2)+…  相似文献   

17.
二项式定理以结构的对称性给人以美的享受,这种美感更体现在它的广泛应用上。运用二项式定理证明一些不等式,结构简明,思路清晰,可达事半功倍之效。 例1 已知数列|a_n|,|b_n|,分别是等差数列和等比数列,且a_1=b_1,a_2=b_2,a_1≠a_2;a_n>0(n∈N~ ),求证:当n≥3时,a_nN时a_n<0,矛盾。故d>0。 n≥3,b_n=b_1q~(n-1)=a_(a_2/a_1)~(n-1) =a_1((a_1) a_1)~(n-1)=a_1(1 d/(a_1))~(n-1) =a_1[1 C_(n-1)~1d/(a_1) C_(n-1)~2 … C_(n-1)~(n-1)(d/(a_1))~(n-1)]  相似文献   

18.
<正>类型一:累加法形如:a_n=a_(n-1)+f(n)(其中f(n)不是常值函数)例1已知数列{a_n}满足a_1=3,2/a_n-a_(n+1)=n(n+1),则a_n=____。方法指导:先将递推公式变形为a_n-a_(n-1)=f(n),令n=2,3,4,…,n,再将这n-1个式子相加,得a_n-a_1=f(2)+f(3)+…+f(n)。所以,a_n=a_1+f(2)+f(3)+…+f(n)=a_1+  相似文献   

19.
关于整系数多项式的整数根,有如下定理: 1.给定整系数多项式 f(x)=a_nx~2+a_(n-1)x~(n-1)+…+a_1x+a_0 (a_0≠0)如果r是f(x)的整数根、则r必是a_0的因子。由这个定理虽然可确定f(x)的可能的整数根的范围,但在某种情况下,范围是比较大的。所以有必要把这个“可能零点”的个数尽量减少。《中学数学教学》1983年第2期发表的“整数根定理的改进”一文,对定理1作了改进。使可能的整数根的范围大大缩小。该译文的定理如下:  相似文献   

20.
杨辉恒等式即现行高中数学教材中所述组合数的第二个基本性质:C_(n-1)~(i-1) C_(n-1)~i=C_n~i(1≤i≤n-1)(1) 我们可以结合等差数列将其推广为定理设a_0,a_1,…,a_n是一个等差数列,则当0≤i≤n时,恒有 a_iC_n~i=a_nC_(n-1)~(i-1) a_0C_(n-1)~i(2) 证明:当i=0或n时,按规定有C_(n-1)~n=0,C_(n-1)~(-1)=0,此时,(2)式显然成立。当1≤i≤n-1时,设等差数列a_0,a_1,…,a_n的公差为d,则a_i=a_0 id (0≤i≤n),于是  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号