首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
著名数学家波利亚在《怎样解题》一书中明确提出,联想是解题计划的重要一环,学会联想是数学解题成功的一大关键.因此,在解题过程中,要善于观察题设条件与所求结论的结构特征,分析题设与结论之间的联系,联想题目与已有知识结构的相似性.本文结合联想导数运算法则,举例说明之.一、联想和、差函数的导数运算法则例1设函数f(x)、g(x)在区间[a,b]上连续,在区间(a,b)上可导,且f′(x)g(x)(B)f(x)g(x)+f(b)(即选项  相似文献   

2.
本文考虑了微分中值定理及积分中值定理的反问题,证明了下述结果:定理1 设函数f(x)及g(x)在闭区间[a,b]上连续,在开区间(a,b)上可导.且对任意ξ∈(a,b).g′(ξ)>0,F(x)=F(x)-F(ξ)/g(x)-g(ξ)为x的严格增函数(除ξ点外)。那么存在x_1,x_2∈(a,b),x_1<ξ相似文献   

3.
1问题呈现问题1(2020全国Ⅱ卷文21)已知函数f(x)=2 ln x+1.(1)若f(x)≤2x+c,求c的取值范围;(2)设a>0,讨论函数g(x)=f(x)-f(a)x-a的单调性.问题2(2020天津卷20)已知函数f(x)=x 3+k ln x(k∈R),f′(x)为f(x)的导函数.(1)当k=6时,(i)求曲线y=f(x)在点(1,f(1))处的切线方程;(ii)求函数g(x)=f(x)-f′(x)+9 x的单调区间和极值.  相似文献   

4.
能取等号吗?     
函数 y=f(x)在 x=x_0处有极值,则它的导数 f′(x)在这点的函数值为零,即 f′(x_0)=0,反过来,函数 y=f(x)的导数在某点的函数值为零时,这点却不一定是函数的极值点.因此,我们必须具体问题具体分析.例1 已知 b>-1,c>0,函数 f(x)=x b 的图象与函数 g(x)=x~2 bx c 的图像相切.(1)求 b 与 c 的关系(用 c 表示 b)(2)设函数 F(x)=f(x)g(x)在(-∞, ∞)内有极值点,求 c 的取值范围.分析:(1)(略);(2)函数 F(x)=f(x)·g(x)在(-∞, ∞)内有极值点,即存在 x_0使F′(x_0)=0,亦即一元二次方程 F′(x)=0有实  相似文献   

5.
题目已知函数f(x)=lnx+kex(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(Ⅰ)求k的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=(x2+x)f′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e-2.本题是2012年山东高考数学理科试题函数问题压轴题,在知识上主要考查函数的定义域、单调性,导数、导数的几何意义,不等式的证明;  相似文献   

6.
在导数的学习中 ,我们常常会遇到下面一些问题 :例 1 已知 f(x) =kx3-x2 + 13 kx-16在R上单调递增 ,则k的取值范围是 (   )(A)k >1     (B)k≥ 1(C)|k| >1(D)|k|≥ 1错解 f′(x) =3kx2 -2x+ 13 k ,依题设 ,对一切x ∈R ,f′(x) >0 .∴3k>0Δ =4-4 · 3k·13 k<0 ,∴k >1,选A .正解 依题设 ,对一切x∈R ,f′(x) ≥0 ,应选B .错因辨析 我们知道 ,对一切x∈R ,f′(x) >0是 f(x)在R上单调递增的充分不必要条件 .该题中 ,f(x)在R上单调递增的充要条件是对一切x∈R ,f′(x)≥ 0 .值得提醒的是 ,并不是对一切函数 f(x) ,f′(x)…  相似文献   

7.
文[1]给出了柯西中值定理的一个新证法。该证法一反常规,不是利用罗尔定理进行证明,而是以文献[2]给出的: (1°)予备定理 设函数f(x)在点x_o处有有穷导数。若这导数f′(x_o)>0f′(x_o)<0),则当x取右方充分接近于x_o的数值时就有f(x)>f(x_o)(f(x)f(x_o))。 (2°)达布定理 若函数f(x)在区间[a,b]上有有穷导数,则函数f′(x)必至少有一次取得介于f′(a)及f′(b)  相似文献   

8.
有一类导数条件下的抽象函数问题,需要构造抽象函数,方能获解.许多同学找不到突破口,构造不出合理的抽象函数.下面就此问题作一些探讨.一、从和差的求导法则入手例1设函数f(x),g(x)是定义在[a,b]上的连续函数,在区间(a,b)内可导,且f′(x)  相似文献   

9.
<正>例设函数f(x)=ex-1-x-ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时,f(x)≥0,求a的取值范围.参考答案如下:(1)a=0时,f(x)=ex-1-x,f′(x)=ex-1.当x∈(-∞,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0.故f(x)在(-∞,0)上单调减少,在(0,+∞)上单调增加.  相似文献   

10.
由于三次函数f(x)=ax3+bx2+cx+d(a>0)的导数是二次函数,二次函数是高中数学中的重要内容,所以三次函数的问题已成为高考命题的一个新的热点和亮点.1三次函数的性质1.1三次函数的单调性因为f′(x)=3ax2+2bx+c,所以方程f′(x)=0中,Δ=4b2-12ac=4(b2-3ac),于是:(1)当b2-3ac>0时,方程f′(x)=0有两个不同的实数根x1,x2(不妨设x1相似文献   

11.
在以前高中数学教材中,我们往往只能用一些代数的方法来研究函数的单调性问题.由于教材内容的限制,这些方法往往运算繁琐,不易掌握其规律.例如,给出一个在某区间上可导的含参数的单调函数,要我们求参数的范围问题,大家往往解答不够完整.下面给大家引入一个定理,能为我们解决这类问题提供依据.定理若函数f(x)在(a,b)内可导,则函数f(x)在(a,b)内单调递增(或单调递减)的充要条件是在(a,b)内f′(x)≥0(或f′(x)≤0).证明必要性:设函数f(x)在(a,b)内单调递增,对任意x∈(a,b)及自变量的改变量Δx,(使x Δx∈(a,b)),由于函数f(x)在(a,b)内单调递增,…  相似文献   

12.
例1已知函数f(x)=ax3+bx2+(b-a)x,(a,b是不同时为零的常数),导函数f′(x),求证:函数y=f′(x)在(-1,0)内至少有一个零点.  相似文献   

13.
从近几年全国高考新课程试卷来看 ,利用导数的相关知识来分析和解决问题已成为高考命题的一个热点 .以下举例说明导数法的基本应用 .一、研究函数的单调区间【例 1】  ( 2 0 0 3年高考新课程卷 )设a>0 ,求函数f(x) =x-ln(x +a) (x∈ ( 0 ,+∞ ) )的单调区间 .分析 :f′(x) =12x-1x+a(x >0 ) ,当a >0 ,x>0时 ,f′(x) >0 x2 + ( 2a-4 )x +a2 >0f′(x) <0 x2 + ( 2a -4 )x+a2 <0( 1 )当a >1时 ,对所有x>0都有f′(x)>0 ,此时f(x)在 ( 0 ,+∞ )上单调递增 .( 2 )当a =1时 ,对x≠ 1 ,有f′(x) >0 ,f(x)在 ( 0 ,1 )内单调递增 ,在 ( 1 ,+∞ )内…  相似文献   

14.
对于任意的函数f(x),g(x)(xε R),令p(x)=f(x)+g(x),s(x)=f(x)g(x),当p(x)(s(x))为定值时,s(x)(p(z))的最值问题可以通过单调性来求解.  相似文献   

15.
夏振雄 《高中生》2013,(27):16-17
一、研究原函数与导函数之间的关系例1(2012年高考重庆理科卷第8题)设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图像如图所示,则下列结论中一定成  相似文献   

16.
一、求简单复合函数单调区间定理:设函数u=g(x)的值域为N.1.若函数y=f(u)在N上为增函数,则u=g(x)的单调增(减)区间就是函数y=f[g(x)]的单调增(减)区间.2.若函数y=f(u)在N上为减函数,则u=g(x)的单调增(减)区间就是y=f[g(x)]的单调减(增)区间.本文根据上述定理归纳出一个比较容易的求复合函数单调区间的一般方法,其步骤是:(1)在y=f[g(z)](复合函数)中,换元即令u=g(x)(中间函数),则y=f(u)(原函数);(2)求出y=f(u)的单调区间N_i(i=1,2,…,n)并判定出增减;(3)求出使u=g(x)∈N_i的x范围M:(4)求  相似文献   

17.
导数在研究函数单调性中的应用和延伸   总被引:1,自引:0,他引:1  
“导数与微分”这部分内容 ,是高中数学新教材试验修订本第三册选修本新增内容 .它为研究函数的性质 (特别是函数的单调性 )提供了强有力的工具 ,具有广义的作用 ,教学大纲对于该部分内容突出一个“用”字 .即会用导数与微分概念公式及相关知识解决有关函数单调性和最值问题 ,本文例谈导数在研究函数单调性时的应用 .利用导数 ,函数的单调性判别法则为 :在区间B上 ,若 f′(x) >0 ,则 f(x)在B上是增函数 ;若 f′(x)<0 ,则 f(x)在B上是减函数 .反之 ,若 f(x)在B内可导 ,那么若 f(x)在B上是增 (减 )函数 ,一定有f′(x) ≥ 0 (≤ 0 ) .例 1 …  相似文献   

18.
函数综合题中常常会出现下面的情形:若函数f(x),g(x)在区间(a,b)上均有意义,且对于任意x∈(a,b),f(x)≥g(x)恒成立.本文透过几个例题介绍构造差函数解决这类问题,供参考.  相似文献   

19.
付怀军 《考试周刊》2013,(72):43-43
<正>考查复合函数f=f(g(x))的单调性.设单调函数y=f(x)为外层函数,y=g(x)为内层函数,(1)若y=f(x)增,y=g(x)增,则y=f(g(x))增.(2)若y=f(x)增,y=g(x)减,则y=f(g(x))减.(3)若y=f(x)减,y=g(x)减,则y=f(g(x))增.(4)若y=f(x)减,y=g(x)增,则y=f(g(x))减.结论:同增异减.  相似文献   

20.
杨玉池  邵立武 《高中生》2013,(27):20-21
过失一:忽视函数的定义域例1函数f(x)=ln(4-x2)的单调递增区间为.难度系数0.70错解据题意可知f′(x)=-2x/4-x2.令f′(x)>0,解得-22.故所求函数的单调递增区间为(-2,0)和(2,+∞).错因分析我们一般都是在函数有定义的前提下研究函数问题,而上述解答过程忽视了函数的定义域,没有先确定函数的定义域,故上述求解出的函数的单调区间没有意义.正解要使已知函数有意义,需满足4-x2>0,解  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号