首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The skill set required of biomedical researchers continues to grow and evolve as biology matures as a natural science. Science necessitates creative yet critical thinking, persuasive communication skills, purposeful use of time, and adeptness at the laboratory bench. Teaching these skills can be effectively accomplished in an inquiry-based, active-learning environment at a primarily undergraduate institution. Cell Biology Techniques, an upper-level cell biology laboratory course at St. John Fisher College, features two independent projects that take advantage of the biology of the nematode Caenorhabditis elegans, a premier yet simple model organism. First, students perform a miniature epigenetic screen for novel phenotypes using RNA interference. The results of this screen combined with literature research direct students toward a singe gene that they attempt to subclone in the second project. The biology of the chosen gene/protein also becomes an individualized focal point with respect to the content of the laboratory. Progress toward course goals is evaluated using written, oral, and group-produced assignments, including a concept map. Pre- and postassessment indicates a significant increase in the understanding of broad concepts in cell biological research.  相似文献   

3.
Instructors attempting new teaching methods may have concerns that students will resist nontraditional teaching methods. The authors provide an overview of research characterizing the nature of student resistance and exploring its origins. Additionally, they provide potential strategies for avoiding or addressing resistance and pose questions about resistance that may be ripe for research study.
“What if the students revolt?” “What if I ask them to talk to a neighbor, and they simply refuse?” “What if they do not see active learning as teaching?” “What if they just want me to lecture?” “What if my teaching evaluation scores plummet?” “Even if I am excited about innovative teaching and learning, what if I encounter student resistance?”
These are genuine concerns of committed and thoughtful instructors who aspire to respond to the repeated national calls to fundamentally change the way biology is taught in colleges and universities across the United States. No doubt most individuals involved in promoting innovative teaching in undergraduate biology education have heard these or variations on these fears and concerns. While some biology instructors may be at a point where they are still skeptical of innovative teaching from more theoretical perspectives (“Is it really any better than lecturing?”), the concerns expressed by the individuals above come from a deeply committed and practical place. These are instructors who have already passed the point where they have become dissatisfied with traditional teaching methods. They have already internally decided to try new approaches and have perhaps been learning new teaching techniques themselves. They are on the precipice of actually implementing formerly theoretical ideas in the real, messy space that is a classroom, with dozens, if not hundreds, of students watching them. Potential rejection by students as they are practicing these new pedagogical skills represents a real and significant roadblock. A change may be even more difficult for those earning high marks from their students for their lectures. If we were to think about a learning progression for faculty moving toward requiring more active class participation on the part of students, the voices above are from those individuals who are progressing along this continuum and who could easily become stuck or turn back in the face of student resistance.Unfortunately, it appears that little systematic attention or research effort has been focused on understanding the origins of student resistance in biology classrooms or the options for preventing and addressing such resistance. As always, this Feature aims to gather research evidence from a variety of fields to support innovations in undergraduate biology education. Below, we attempt to provide an overview of the types of student resistance one might encounter in a classroom, as well as share hypotheses from other disciplines about the potential origins of student resistance. In addition, we offer examples of classroom strategies that have been proposed as potentially useful for either preventing student resistance from happening altogether or addressing student resistance after it occurs, some of which align well with findings from research on the origins of student resistance. Finally, we explore how ready the field of student resistance may be for research study, particularly in undergraduate biology education.  相似文献   

4.
5.
设计并建成了植物生物学辅助教学网,对该网的系统框架体系、功能和特色、系统开发及运行环境等进行了介绍。  相似文献   

6.
7.
At the close of the Society for the Advancement of Biology Education Research conference in July 2012, one of the organizers made the comment: “Misconceptions are so yesterday.” Within the community of learning sciences, misconceptions are yesterday''s news, because the term has been aligned with eradication and/or replacement of conceptions, and our knowledge about how people learn has progressed past this idea. This essay provides an overview of the discussion within the learning sciences community surrounding the term “misconceptions” and how the education community''s thinking has evolved with respect to students’ conceptions. Using examples of students’ incorrect ideas about evolution and ecology, we show that students’ naïve ideas can provide the resources from which to build scientific understanding. We conclude by advocating that biology education researchers use one or more appropriate alternatives in place of the term misconception whenever possible.  相似文献   

8.
姜志宏 《成才之路》2020,(7):124-125
培养学生的核心素养是生物教学的重要目标,基于智慧资源平台的智慧教学模式强调以生物学习资源为基础,在课前、课间、课后进行智慧资源共享,有利于提高学生核心素养。利用智慧资源测试平台可以诊断学生的学习水平,并根据学生的生物学习能力提供学习资源。文章对基于智慧资源平台的中学生物教学模式进行相关探讨。  相似文献   

9.
The scale and importance of Vision and Change in Undergraduate Biology Education: A Call to Action challenges us to ask fundamental questions about widespread transformation of college biology instruction. I propose that we have clarified the “vision” but lack research-based models and evidence needed to guide the “change.” To support this claim, I focus on several key topics, including evidence about effective use of active-teaching pedagogy by typical faculty and whether certain programs improve students’ understanding of the Vision and Change core concepts. Program evaluation is especially problematic. While current education research and theory should inform evaluation, several prominent biology faculty–development programs continue to rely on self-reporting by faculty and students. Science, technology, engineering, and mathematics (STEM) faculty-development overviews can guide program design. Such studies highlight viewing faculty members as collaborators, embedding rewards faculty value, and characteristics of effective faculty-development learning communities. A recent National Research Council report on discipline-based STEM education research emphasizes the need for long-term faculty development and deep conceptual change in teaching and learning as the basis for genuine transformation of college instruction. Despite the progress evident in Vision and Change, forward momentum will likely be limited, because we lack evidence-based, reliable models for actually realizing the desired “change.”
All members of the biology academic community should be committed to creating, using, assessing, and disseminating effective practices in teaching and learning and in building a true community of scholars. (American Association for the Advancement of Science [AAAS], 2011 , p. 49)
Realizing the “vision” in Vision and Change in Undergraduate Biology Education (Vision and Change; AAAS, 2011 ) is an enormous undertaking for the biology education community, and the scale and critical importance of this challenge prompts us to ask fundamental questions about widespread transformation of college biology teaching and learning. For example, Vision and Change reflects the consensus that active teaching enhances the learning of biology. However, what is known about widespread application of effective active-teaching pedagogy and how it may differ across institutional and classroom settings or with the depth of pedagogical understanding a biology faculty member may have? More broadly, what is the research base concerning higher education biology faculty–development programs, especially designs that lead to real change in classroom teaching? Has the develop-and-disseminate approach favored by the National Science Foundation''s (NSF) Division of Undergraduate Education (Dancy and Henderson, 2007 ) been generally effective? Can we directly apply outcomes from faculty-development programs in other science, technology, engineering, and mathematics (STEM) disciplines or is teaching college biology unique in important ways? In other words, if we intend to use Vision and Change as the basis for widespread transformation of biology instruction, is there a good deal of scholarly literature about how to help faculty make the endorsed changes or is this research base lacking?In the context of Vision and Change, in this essay I focus on a few key topics relevant to broad-scale faculty development, highlighting the extent and quality of the research base for it. My intention is to reveal numerous issues that may well inhibit forward momentum toward real transformation of college-level biology teaching and learning. Some are quite fundamental, such as ongoing dependence on less reliable assessment approaches for professional-development programs and mixed success of active-learning pedagogy by broad populations of biology faculty. I also offer specific suggestions to improve and build on identified issues.At the center of my inquiry is the faculty member. Following the definition used by the Professional and Organizational Development Network in Higher Education (www.podnetwork.org), I use “faculty development” to indicate programs that emphasize the individual faculty member as teacher (e.g., his or her skill in the classroom), scholar/professional (publishing, college/university service), and person (time constraints, self-confidence). Of course, faculty members work within particular departments and institutions, and these environments are clearly critical as well (Stark et al., 2002 ). Consequently, in addition to focusing on the individual, faculty-development programs may also consider organizational structure (such as administrators and criteria for reappointment and tenure) and instructional development (the overall curriculum, who teaches particular courses). In fact, Diamond (2002) emphasizes that the three areas of effort (individual, organizational, instructional) should complement one another in faculty-development programs. The scope of the numerous factors impacting higher education biology instruction is a realistic reminder about the complexity and challenge of the second half of the Vision and Change endeavor.This essay is organized around specific topics meant to be representative and to illustrate the state of the art of widespread (beyond a limited number of courses and institutions) professional development for biology faculty. The first two sections focus on active teaching and biology students’ conceptual understanding, respectively. The third section concerns important elements that have been identified as critical for effective STEM faculty-development programs.  相似文献   

10.
A host of simple teaching strategies—referred to as “equitable teaching strategies” and rooted in research on learning—can support biology instructors in striving for classroom equity and in teaching all their students, not just those who are already engaged, already participating, and perhaps already know the biology being taught.  相似文献   

11.
Basic phylogenetics and associated “tree thinking” are often minimized or excluded in formal school curricula. Informal settings provide an opportunity to extend the K–12 school curriculum, introducing learners to new ideas, piquing interest in science, and fostering scientific literacy. Similarly, university researchers participating in science, technology, engineering, and mathematics (STEM) outreach activities increase awareness of college and career options and highlight interdisciplinary fields of science research and augment the science curriculum. To aid in this effort, we designed a 6-h module in which students utilized 12 flowering plant species to generate morphological and molecular phylogenies using biological techniques and bioinformatics tools. The phylogenetics module was implemented with 83 high school students during a weeklong university STEM immersion program and aimed to increase student understanding of phylogenetics and coevolution of plants and pollinators. Student response reflected positive engagement and learning gains as evidenced through content assessments, program evaluation surveys, and program artifacts. We present the results of the first year of implementation and discuss modifications for future use in our immersion programs as well as in multiple course settings at the high school and undergraduate levels.
Just as beginning students in geography need to be taught how to read maps, so beginning students in biology should be taught how to read trees and to understand what trees communicate. O’Hara (1997 , p. 327)
  相似文献   

12.
The BIO2010 report provided a compelling argument for the need to create learning experiences for undergraduate biology students that are more authentic to modern science. The report acknowledged the need for research that could help practitioners successfully create and reform biology curricula with this goal in mind. Our objective in this article was to explore how a set of six design heuristics could be used to evaluate the potential of curricula to support productive learning experiences for science students. We drew on data collected during a long-term study of an undergraduate traineeship that introduced students to mathematical modeling in the context of modern biological problems. We present illustrative examples from this curriculum that highlight the ways in which three heuristics—instructor role-modeling, holding students to scientific norms, and providing students with opportunities to practice these norms—consistently supported learning across the curriculum. We present a more detailed comparison of two different curricular modules and explain how differences in student authority, problem structure, and access to resources contributed to differences in productive engagement by students in these modules. We hope that our analysis will help practitioners think in more concrete terms about how to achieve the goals set forth by BIO2010.  相似文献   

13.
This study was undertaken to gain insights into undergraduate students' understanding of early embryonic development, specifically, how well they comprehend the concepts of volume constancy, cell lineages, body plan axes, and temporal and spatial dimensionality in development. To study student learning, a curriculum was developed incorporating resources from the Caenorhabditis elegans research community. Students engaged in a preactivity assessment, followed by instructional materials (IMs) emphasizing inquiry-based learning and a postinstruction assessment to gauge their learning. This study, conducted at two research sites with eight and nine students, respectively, shows that before instruction, most students confused embryonic cell cleavage, where total volume is constant, with regular cell division, in which total cell volume doubles. Despite their ability to construct a cell lineage tree, most of the study participants were not aware of its biological significance. All students correctly identified cells of anterior and posterior axis, but not cells of the dorsal and ventral axis. Although the students had no difficulty with the time dimensional aspect of development, most viewed an embryo as spatially two-dimensional rather than three-dimensional. Furthermore, this study indicates that combining authentic research resources with inquiry-based learning benefits student learning of key concepts in embryology.  相似文献   

14.
15.
16.
This study offers an innovative and sustainable instructional model for an introductory undergraduate course. The model was gradually implemented during 3 yr in a research university in a large-lecture biology course that enrolled biology majors and nonmajors. It gives priority to sources not used enough to enhance active learning in higher education: technology and the students themselves. Most of the lectures were replaced with continuous individual learning and 1-mo group learning of one topic, both supported by an interactive online tutorial. Assessment included open-ended complex questions requiring higher-order thinking skills that were added to the traditional multiple-choice (MC) exam. Analysis of students’ outcomes indicates no significant difference among the three intervention versions in the MC questions of the exam, while students who took part in active-learning groups at the advanced version of the model had significantly higher scores in the more demanding open-ended questions compared with their counterparts. We believe that social-constructivist learning of one topic during 1 mo has significantly contributed to student deep learning across topics. It developed a biological discourse, which is more typical to advanced stages of learning biology, and changed the image of instructors from “knowledge transmitters” to “role model scientists.”  相似文献   

17.
This report is to evaluate an online writing website. The name of the online resource is the Purdue Online Writing Lab (http://owl.english.purdue.edu/owl/). This website at Purdue University offers writing resources and instructional materials for both teachers and students for in-class or out-of-class teaching and learning of writing. Its interactive, integrative, and pragmatic approach to the teaching and learning of writing on the Internet deserves our attention.  相似文献   

18.
ABSTRACT

The Digital Archival Advertisements Survey Process (DAASP) model is a collaborative active learning exercise designed to aid students in evaluating primary source documents of print-based advertisements. By deploying DAASP, the researchers were able to assess the students’ ability to evaluate their biases of the advertisements in a first-year composition course. This research attempts to answer the following research question: Do students perceive heatmap-centered collaboration as helpful with their evaluation of library-licensed digital primary sources? This research explored students’ experiences interacting with and reflecting on archival advertisements (mid-twentieth century) in a first-year composition class in Fall 2017 utilizing the DAASP model.  相似文献   

19.
Successful learning outcomes require the integration of content and meaningful assessment with effective pedagogy. However, development of coherent and cohesive curriculum is seemingly overwhelming even to experienced teachers. Obviously this creates a barrier to successful student learning. Understanding by Design (UbD) overcomes this impasse by providing concise and practical guidance for experienced and inexperienced teachers. In programs sponsored by the National Science Foundation and the National Institutes of Health, teams composed of University of Wyoming graduate students and science teachers from grades 6 to 9 designed motivating, inquiry-based lesson plans intended to get students to think and act like scientists. In this process, teams utilized principles outlined in UbD with great success. UbD describes a practical and useful “backward” design process in which anticipated results are first identified; acceptable evidence for learning outcomes is established and, only then, are specific learning experiences and instruction planned. Additionally, UbD provides procedures to avoid content overload by focusing on “enduring principles.” WHERE, the UbD sieve for activities, was used effectively to develop tasks that are engaging, that are consistent with state educational standards, and that promote self-directed, life-long learning.  相似文献   

20.
Educational video games are hypothesized to be good environments for promoting learning; however, research on conceptual learning from games is mixed. We tested whether embedding a learning support in the form of short animations illustrating physics concepts that can be used to aid gameplay improved learning. Ninety-six 7th to 11th grade students were randomly assigned to play Physics Playground with or without the learning supports over a 4-day period. Results indicate that students who played a version of the game with embedded learning supports showed more improvement on a far- (d = 0.36), but not on a near-transfer physics assessment (d = 0.17) compared to those who played without the supports. The learning supports did not affect students’ enjoyment with the game. We conclude that the game-embedded animations were effective at promoting conceptual learning without sacrificing the fun of game-based learning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号