首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper considers the finite-time bipartite consensus problem governed by linear multiagent systems subject to input saturation under directed interaction topology. Due to the existence of input saturation, the dynamic performance of linear multiagent systems degrades significantly. For the improvement of the dynamic performance of systems, a dynamic gain scheduling control approach is proposed to design a dynamic Laplacian-like feedback controller, which can be obtained from the analytical solution of a parametric Lyapunov equation. Suppose that each agent is asymptotically null controllable with bounded control, and that the corresponding interaction topology of the signed directed graph with a spanning tree is structurally balanced. Then the dynamic Laplacian-like feedback control can ensure that linear multiagent systems will achieve the finite time bipartite consensus. The dynamic gain scheduling control can better improve the bipartite consensus performance of the linear multiagent systems than the static gain scheduling control. Finally, two examples are provided to show the effectiveness of the proposed control design method.  相似文献   

2.
《Journal of The Franklin Institute》2023,360(14):10681-10705
This paper investigates dynamic event-triggered adaptive leader-following semi-global bipartite consensus (SGBC) of multi-agent systems (MASs) with input saturation. A dynamic event-triggered adaptive control (DETAC) protocol is presented, where the triggering function can regulate its threshold value dynamically. It’s turned out that the SGBC can be achieved via the DETAC protocol under some inequalities. Then, the proposed DETAC protocol is extended to solve bipartite consensus under jointly connected topology. Furthermore, the Zeno behaviors will be avoided. Finally, the rationality of proposed DETAC protocols are tested by simulation results.  相似文献   

3.
In this paper, an interventional bipartite consensus problem is considered for a high-order multi-agent system with unknown disturbance dynamics. The interactions among the agents are cooperative and competitive simultaneously and thus the interaction network (just called coopetition network in sequel for simplicity) is conveniently modeled by a signed graph. When the coopetition network is structurally balanced, all the agents are split into two competitive subgroups. An exogenous system (called leader for simplicity) is introduced to intervene the two competitive subgroups such that they can reach a bipartite consensus. The unknown disturbance dynamics are assumed to have linear parametric models. With the help of the notation of a disagreement state variable, decentralized adaptive laws are proposed to estimate the unknown disturbances and a dynamic output-feedback consensus control is designed for each agent in a fully distributed fashion, respectively. The controller design guarantees that the state matrix of the closed-loop system can be an arbitrary predefined Hurwitz matrix. Under the assumption that the coopetition network is structurally balanced and the leader is a root of the spanning tree in an augmented graph, the bipartite consensus and the parameter estimation are analyzed by invoking a common Lyapunov function method when the coopetition network is time-varying according to a piecewise constant switching signal. Finally, simulation results are given to demonstrate the effectiveness of the proposed control strategy.  相似文献   

4.
This paper is devoted to the dynamic event-triggered consensus problem of general linear multi-agent systems under fixed and switching directed topologies. Two distributed dynamic event-triggered strategies, where internal dynamic variables are involved, are introduced for each agent to achieve consensus asymptotically. Compared with the existing static triggering strategies, the purposed dynamic triggering strategies result in larger inter-execution times and less communication energy among agents. In addition, neither controller updates nor triggering threshold detections require continuous communication in the purposed control strategies. It is also proven that the Zeno behavior is strictly ruled out under fixed and switching directed topologies. Finally, the effectiveness of the theoretical analysis is demonstrated by numerical simulations.  相似文献   

5.
The ability to ensure the desired performance of the cooperative-antagonistic multi-agent networks (MANs) in the presence of communication constraints is an important task in many applications of real systems. In this paper, under the proposed event-triggered condition (ETC), different types of consensus are obtained under different network topology. We concentrates on the event-based bipartite consensus. It is shown that under the proposed ETC (i) the addressed cooperative-antagonistic network with arbitrary communication delays reaches bipartite consensus provided that the network is balanced; (ii) the network model reaches zero if the network is unbalanced. Further, to avoid the continuously verifying the triggering condition, a self-triggered algorithm is proposed for realizing the bipartite consensus of the network model. A numerical example is given to illustrate the effectiveness of the theoretical results.  相似文献   

6.
We address the leader-following tracking consensus issue for a class of linear multi-agent systems (MASs) via dynamic event-triggered (DET) approaches in this paper. The DET communication mechanism is introduced by an additional internal dynamic variable, and is developed to schedule agents’ data transmission. State observers are also employed to tackle the scenario wherein inner information of follower agents are not available for measurement. And then, state-based and observer-based distributed control proposals are proposed on the basis of dynamic event-triggered mechanism (DETM), respectively. To avoid continuous measurement information monitor, we present a technical approach for generation of the combinational information from their own neighboring agents only at event instants. The stabilities of the resulting closed-loop systems, both state-feedback one and output-feedback one, are rigorously analyzed in theory, and it is proven that all signals in the closed-loop system are bounded and Zeno behavior is also excluded. Simulation examples are presented to illustrate the theoretical claims.  相似文献   

7.
This paper addresses the observer-based dynamic event-triggered (DET) sliding mode control (SMC) problem for fuzzy singular semi-Markovian jump systems (FSS-MJSs) subject to generalized dissipative performance, in which a novel double-quantized structure is reasonably merged into a unified model. The main aim of this paper is to develop a mode-dependent adaptive sliding mode control (ASMC) law through the DET rule, which not only makes the closed-loop systems mean-square admissibility and generalized dissipative, but also the finite-time reachability around the predefined sliding mode surface (SMS) can be achieved. Firstly, in order to improve the data transmission efficiency and save network bandwidth resources, DET and doubled-quantized-based control protocol are introduced, in which the event-based threshold function is dynamically regulated and the data of input and output are both quantized; Secondly, due to the sensor information constraints, system state information is not always obtained in practice, hence, a suitable observer design can make up for this defect. Meantime, in terms of elegant linearization technique and implicit function theorem, the uniqueness of the solution for FSS-MJSs is also established; Additionally, by making use of the Lyapunov functional and linear matrix inequality (LMI) technique, both the desired SMC gains, observer gains and triggering parameter matrices are co-designed, more than that the derivative singular matrix is also integrated into the whole design process such that the derived conditions are much more easily to be checked; Finally, a numerical example and a practical application example are co-given to verify the effectiveness of our design mentality.  相似文献   

8.
In this paper, the sampled-data-based event-triggered (SDBET) consensus problem of second-order multi-agent systems (MASs) with sampled position data is studied via impulsive control. Firstly, two kinds of SDBET impulsive control protocols are proposed, both of which employ sampled position data only. Secondly, a novel SDBET transmission scheme is designed to ensure the maximum length of triggering intervals exists, which can be regulated by the parameters in the triggering function. Also, the Zeno behavior is naturally excluded under the SDBET transmission scheme. And by using the designed SDBET impulsive control scheme, consensus of second-order MASs can be achieved with lower transmission and control updating frequency than using the periodical impulsive control scheme. Thirdly, sufficient conditions on the communication topology, the length of triggering intervals and control gains are derived to achieve SDBET consensus. It is also shown that to achieve consensus, both the maximum and minimum lengths of triggering intervals should be restricted. Also, a practical method for calculating the sampling period and other triggering parameters is given to ensure that the length of the triggering interval does not exceed the given range, and the SDBET transmission scheme is truly realized. Finally, some numerical examples are given to demonstrate the effectiveness of the theoretical results.  相似文献   

9.
This paper researches the output consensus problem of heterogeneous linear multi-agent systems with cooperative and antagonistic interactions. Two fixed-time state compensator control approaches, one static dynamic and the other distributed adaptive dynamic, are considered for heterogeneous systems subject to logarithmic quantization. Then, a fixed-time output regulation control protocol is constructed to cope with the problem of bipartite output consensus and adaptive fixed-time output consensus of heterogeneous systems which is fully distributed without any global information. Besides, the fully distributed adaptive algorithm is employed to calculate the system matrix of leader and it’s also effectively eliminated the harmful chattering. Finally, two simulations are carried out to testify the feasibility of theoretical results.  相似文献   

10.
The leaderless, prescribed performance consensus problem for groups of agents with antagonistic interactions is addressed for the first time in this paper. We consider agents modeled by pure feedback nonlinear systems with unknown dynamics and an agent communication network described by a signed digraph with a directed spanning tree. A new proportional and integral (PI) variable transformation is proposed that enables the solution of the problem of leaderless bipartite consensus with prescribed performance by recasting it into a regulation problem with prescribed performance, which in turn we solve by a low complexity distributed control law. The algorithm guarantees uniform boundedness of all closed-loop signals and prescribed performance for the bipartite consensus error. Simulations verify the validity of our theoretical analysis.  相似文献   

11.
This paper addresses the problem of bipartite output consensus of heterogeneous multi-agent systems over signed graphs. First, under the assumption that the sub-graph describing the communication topology among the agents is connected, a fully distributed protocol is provided to make the heterogeneous agents achieve bipartite output consensus. Then for the case that the topology graph has a directed spanning tree, a novel adaptive consensus protocol is designed, which also avoids using any global information. Each of these two protocols consists of a solution pair of the regulation equation and a homogeneous compensator. Numerical simulations show the effectiveness of the proposed approach.  相似文献   

12.
In this paper, the leader-following bipartite consensus is investigated for a group of uncertain multiple Euler–Lagrange systems with disturbances. An innovative adaptive distributed observer is developed without requiring that followers surely acquire the leader’s auxiliary state and system matrix. A directed signed network satisfying the principle of structural balance is exploited to describe the interaction among agents. Then a novel bipartite consensus control protocol is proposed to solve the bipartite consensus problem of multiple Euler–Lagrange systems. The theoretical proof is provided via constructing a Lyapunov function and applying Barbalat lemma to analyze the convergence problem. Finally, a numerical simulation is utilized to demonstrate the effectiveness of proposed method.  相似文献   

13.
This paper investigates the bipartite leader-following consensus of second-order multi-agent systems with signed digraph topology. To significantly reduce the communication burden, an event-triggered control algorithm is proposed to solve the bipartite leader-following consensus problem, where a novel event-triggered function is designed. Under some mild assumptions on the network topology and node dynamics, a sufficient condition is derived using Lyapunov stability method and matrix theory to guarantee the bipartite consensus. In particular, it is shown that the continuous communication can be avoided and the Zeno-behavior can be excluded for the designed event-triggered algorithm. Numerical simulations are presented to illustrate the correctness of the theoretical analysis.  相似文献   

14.
This paper is dedicated to the stochastic bipartite consensus issue of discrete-time multi-agent systems subject to additive/multiplicative noise over antagonistic network, where a stochastic approximation time-varying gain is utilized for noise attenuation. The antagonistic information is characterized by a signed graph. We first show that the semi-decomposition approach, combining with Martingale convergence theorem, suffices to assure the bipartite consensus of the agents that are disturbed by additive noise. For multiplicative noise, we turn to the tool from Lyapunov-based technique to guarantee the boundedness of agents’ states. Based on it, the bipartite consensus with multiplicative noise can be achieved. It is found that the constant stochastic approximation control gain is inapplicable for the bipartite consensus with multiplicative noise. Moreover, the convergence rate of stochastic MASs with communication noise and antagonistic exchange is explicitly characterized, which has a close relationship with the stochastic approximation gain. Finally, we verify the obtained theoretical results via a numerical example.  相似文献   

15.
This paper considers the fixed-time bipartite consensus of nonlinear multi-agent systems (MASs) subjected to external disturbances. Under the directed signed networks, several sufficient conditions are proposed to guarantee the fixed-time bipartite consensus of MASs with or without leaders, respectively. Some discontinuous control protocols are developed to realize fixed-time tracking bipartite consensus of MASs with a leader. Moreover, the fixed-time leaderless bipartite consensus under directed signed graph are discussed as well. Two numerical examples are given to verify the effectiveness of the theoretical results.  相似文献   

16.
The distributed event-triggered secure consensus control is discussed for multi-agent systems (MASs) subject to DoS attacks and controller gain variation. In order to reduce unnecessary network traffic in communication channel, a resilient distributed event-triggered scheme is adopted at each agent to decide whether the sampled signal should be transmitted or not. The event-triggered scheme in this paper can be applicable to MASs under denial-of-service (DoS) attacks. We assume the information of DoS attacks, such as the attack period and the consecutive attack duration, can be detected. Under the introduced communication scheme and the occurrence of DoS attacks, a new sufficient condition is achieved which can guarantee the security consensus performance of the established system model. Moreover, the explicit expressions of the triggering matrices and the controller gain are presented. Finally, simulation results are provided to verify the effectiveness of the obtained theoretical results.  相似文献   

17.
This paper investigates secure bipartite consensus tracking of linear multi-agent systems under denial-of-service(DoS) attacks by using event-triggered control mechanism with data sampling. Both bipartite leader-following and containment tracking consensus are considered in this paper. The event-triggered control protocol using sampled-data information is designed to save limited resources. The communication channels are interrupted by intermittent DoS attacks. Sufficient conditions on the sampling periods, attack frequency and attack duration are obtained to ensure secure bipartite tracking consensus of the multi-agent systems. Finally, simulation example is provided to illustrate the effectiveness of the theoretical results.  相似文献   

18.
In this paper, the event-triggered bipartite consensus problem is investigated for nonlinear multi-agent systems under switching topologies, only part of topologies contain directed spanning tree rooted at the leader. First, a dynamic bipartite compensator is constructed based on relative output information to provide control signal. Then, the time-varying gain method is adopted to propose a compensator-based event-triggered control protocol without Zeno behavior. Notably, the control protocol proposed achieves the bipartite consensus while reducing update frequency effectively. Moreover, a low conservative switching law is designed by the topology-dependent average dwell time strategy, which fully considers the differences among topologies and provides an independent average dwell time for each topology. As an extension, the nonlinear multi-agent systems with non-zero input of leader are further studied. Finally, a practical example is presented to demonstrate the feasibility of proposed control protocol.  相似文献   

19.
This paper considers the problem of the leader-following consensus of generally nonlinear discrete-time multi-agent systems with limited communication channel capacity over directed fixed communication networks. The leader agent and all follower agents are with multi-dimensional nonlinear dynamics. We propose a novel kind of consensus algorithm for each follower agent based on dynamic encoding and decoding algorithms and conduct a rigorous analysis for consensus convergence. It is proved that under the consensus algorithm designed, the leader-following consensus is achievable and the quantizers equipped for the multi-agent systems can never be saturated. Furthermore, we give the explicit forms of the data transmission rate for the connected communication channel. By properly designing the system parameters according to restriction conditions, we can ensure the consensus and communication efficiency with merely one bit information exchanging between each pair of adjacent agents per step. Finally, simulation example is presented to verify the validity of results obtained.  相似文献   

20.
This paper proposes two kinds of distributed disturbance observer (DO) based consensus control laws for linear multi-agent systems (MAS) with mismatched disturbances. For a linear MAS with mismatched disturbances generated by exosystems, we design relative information based distributed DOs for each agent to obtain information of disturbances. The first method is to utilise the information of disturbances obtained by the distributed DO as a feedforward term to reject influence of exogenous disturbances for consensus results, where the gain matrix of the feedforward term is obtained via solving a matrix equation. The second method is to design an internal model based dynamic compensator to reject influence of exogenous disturbances, where the dynamic compensator is also updated by the distributed DO. The leaderless and leader-follower consensus are both considered in this paper, and rigorous proof of consensus results is also given. Finally, some numerical simulations verify effectiveness of the proposed consensus control laws.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号