首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
This paper introduces the Lebesgue sampling approach to the robust stabilization of Boolean control networks (BCNs) with external disturbances. Given a Lebesgue sampling region and a feedback control, a time aggregated system is obtained via the semi-tensor product method. Then, a new criterion is presented for the robust stabilization of time aggregated system. Furthermore, given a signal of Lebesgue sampling, a sequence of the Lebesgue type robust reachable sets is constructed. Based on these reachable sets, several algorithms are presented to design both Lebesgue sampling region and sampled-data state feedback control for the robust stabilization of BCNs.  相似文献   

3.
This paper deals with the fault tolerant control (FTC) design for a Vertical Takeoff and Landing (VTOL) aircraft subject to external disturbances and actuator faults. The aim is to synthesize a fault tolerant controller ensuring trajectory tracking for the nonlinear uncertain system represented by a Takagi–Sugeno (T–S) model. In order to design the FTC law, a proportional integral observer (PIO) is adopted which estimate both of the faults and the faulty system states. Based on the Lyapunov theory and ?2 optimization, the trajectory tracking performance and the stability of the closed loop system are analyzed. Sufficient conditions are obtained in terms of linear matrix inequalities (LMI). Simulation results show that the proposed controller is robust with respect to uncertainties on the mechanical parameters that characterize the model and secures global convergence.  相似文献   

4.
In this paper, a robust actuator fault diagnosis scheme is investigated for satellite attitude control systems subject to model uncertainties, space disturbance torques and gyro drifts. A nonlinear unknown input observer is designed to detect the occurrence of any actuator fault. Subsequently, a bank of adaptive unknown input observers activated by the detection results are designed to isolate which actuator is faulty and then estimate of the fault parameter. Fault isolation is achieved based on the well known generalized observer strategy. The simulation on a closed-loop satellite control system with time-varying or constant actuator faults in the form of additive and multiplicative unknown dynamics demonstrates the effectiveness of the proposed robust fault diagnosis strategy.  相似文献   

5.
6.
Fault or anomaly detection is one of the key problems faced by the chemical process industry for achieving safe and reliable operation. In this study, a novel methodology, spectral weighted graph autoencoder (SWGAE) is proposed, wherein, the problem of anomaly detection is addressed with the help of graphs. The proposed approach entails the following key steps. Firstly, constructing a spectral weighted graph, where each time step of a process variable in the multivariate time series dataset is modelled as a node in an appropriately tuned moving window. Subsequently, we propose to monitor the weights of the edges between two nodes that make a connection. The faulty instances are identified based on the discrepancy in the weight pattern compared to normal operating data. To this end, once the weights are determined, they are fed to the auto-encoder network, where reconstruction loss is calculated, and faults are identified if the reconstruction loss exceeds a threshold. Further, to make the proposed approach comprehensive, a fault isolation methodology is also proposed to identify the faulty nodes once the faulty variables are identified. The proposed approach is validated using Tennessee-Eastman benchmark data and pressurized heavy water nuclear reactor real-time plant data. The results indicate that the SWGAE method, when compared to the other state-of-the-art methods, yielded more accurate results in correctly detecting faulty nodes and isolating them.  相似文献   

7.
This paper considers a fault-tolerant control problem for a class of interconnected linear hyperbolic partial differential equation systems. Both subsystem faults and coupling faults are considered. Firstly, the well-posedness of the faulty system is analyzed by using semigroup theory. Secondly, for the fault-free case, a stabilizing boundary feedback control based on small-gain theorem is proposed. Consequently, in the presence of faults, fault recoverability conditions are established that maintain the stability of the faulty systems. The fault-tolerant control strategies are also provided. A heat exchanger example is taken to illustrate the effectiveness and practicality of the proposed methods.  相似文献   

8.
This paper is concerned with the event-triggered fault estimation and fault-tolerant control for continuous-time dynamic systems subject to system fault and external disturbance under network environment. Firstly, based on the event-triggered sampling, a fault diagnosis observer is constructed to estimate both the system state and the system fault simultaneously, and a multi-objective constraint is established to guarantee the estimation accuracy. Based on the estimated system state and fault signal, a fault-tolerant controller is proposed to compensate the influence of occurred faults and maintain the system performance. The event-triggered scheme and the fault-tolerant controller are co-designed to guarantee the required performance of faulty system and reduce the consumption of communication resources. Finally, simulation results of an F-404 aircraft engine system are provided to demonstrate the effectiveness of the proposed method.  相似文献   

9.
Multiplicative faults generally refer to the change of process parameters or structures which are well-suited to represent the process-related anomalies. Unlike sensor faults and external disturbances that are added into process observations and independent with process states, process-related faults directly influence process states such that it is more challenge to reconstruct and diagnose. To address the process-related fault diagnosis, an online fault reconstruction method based on the multiplicative fault model is proposed with the commonly used multivariate statistical process monitoring framework. The fault reconstruction strategy based on the multiplicative fault representation is given by minimizing reconstruction errors. The diagnosability of the proposed reconstruction method is guaranteed for the change of a single parameter, also known as a unidimensional fault. Moreover, the reconstruction-based contribution is derived for providing heuristic references when diagnosing multidimensional faults. Experiments on a numerical example and a simulated continuous stirred tank heater process benchmark are carried out to investigate the effectiveness of the proposed method. The results show that this method can accurately diagnose the faulty variable or loop and further reconstruct the faulty samples into normal ones.  相似文献   

10.
This paper addresses the problem of adaptive fault estimation and fault-tolerant control for a class of nonlinear non-Gaussian stochastic systems subject to time-varying loss of control effectiveness faults. In this work, time-varying faults, Lipschitz nonlinear property and general stochastic characteristics are taken into consideration in a unified framework. Instead of using the system output signal, the output distribution is adopted for shape control. Both the states and faults are simultaneously estimated by an adaptive observer. Then, a fault tolerant shape controller is designed to compensate for the faults and realize stochastic output distribution tracking. Both the fault estimation and the fault tolerant control schemes are designed based on linear matrix inequality (LMI) technique. Satisfactory performance has been obtained for a numerical simulation example. Furthermore the proposed scheme is successfully tested in a case study of particle size distribution control for an emulsion polymerization reactor.  相似文献   

11.
In this paper, the observability problem of Boolean control networks (BCNs) with stochastic disturbances is investigated via two kinds of control schemes: deterministic control and state feedback control. Firstly, based on the proposed indicator matrix, a simplified system of the original augmented Boolean system is constructed. Based on the analysis of the auxiliary system, observability of the original BCN is converted to determine whether an observable set can be reached from another unobservable set. After that, some necessary and sufficient conditions are obtained to judge the observability of BCNs. At the same time, two algorithms are proposed for designing these two types of control sequences. Finally, numerical simulations are also provided to demonstrate feasibility of the theoretical results.  相似文献   

12.
This paper addresses the problem of controlling a wave energy converter (WEC) susceptible to faults in its braking subsystems, characterized through nonlinear damping. By considering the necessity of robust trajectory tracking related to the sea waves for maximizing the converted energy, one aims to preserve such a trajectory in the presence of faults to avoid physical damage in the structure of the WEC. To achieve this objective, this paper proposes a fault-tolerant control (FTC) that combines two systems: (i) a novel nonlinear servocompensator (NSC) and (ii) a fault diagnosis subsystem (FD). The NSC is based on a variable structure control that generalizes the internal model principle for robust tracking. The reference signal is computed from real-time measurements of the irregular sea waves. The FD subsystem estimates the faults related to the wear of the brakes via an unknown input observer. Due to its independent performance from the FD, the global scheme can be considered as a passive FTC. By considering the faulty model of a WEC based on the Archimedes wave swing prototype, theoretical formulation and the convergence proof are given for the NSC and the FD. The performance of the proposed design is verified with numerical simulations of the WEC with the incidence of irregular sea waves under different fault scenarios in the upper and lower brakes.  相似文献   

13.
In this paper, we study the generalized cluster synchronization problem for the Boolean control networks (BCNs) with delays in both the states and the inputs. First, by using the method of semi-tensor product of matrices, the original network is transformed into an equivalent extended system. Next, based on the updated iterative equation of the system, two types of generalized cluster synchronization are investigated: 1) generalized internal cluster synchronization within the BCN, and 2) generalized cluster synchronization between the BCN and the target reference network. Some necessary and sufficient conditions are proposed guaranteeing the realization of the generalized cluster synchronization. What is more, the gain matrices of the state-feedback controllers are explicitly designed. Numerical simulations are also given to illustrate effectiveness of the theoretical results obtained.  相似文献   

14.
Advanced fault detection and accommodation schemes are required for ensuring efficient and reliable operation of modern wind turbines. This paper presents a novel approach in designing a fault detection and diagnosis (FDD) and fault-tolerant control (FTC) scheme for a wind turbine using fuzzy modeling, identification and control techniques. First, an improved gain-scheduled proportional-integral (PI) control system based on fuzzy gain scheduling (FGS) technique for multi-input and multi-output wind turbine system is designed. Then, to accommodate sensor faults and based on a signal correction algorithm, an active fault-tolerant control system (AFTCS) is developed as an extension of the gain-scheduled PI control system. The AFTCS exploits the fault information from a model-based FDD scheme developed using fuzzy modeling and identification method. The proposed schemes are evaluated by a series of simulations on a well-known large off-shore wind turbine benchmark in the presence of wind turbulences, measurement noises, and different realistic fault scenarios. All results indicate high effectiveness and robustness of the designed control systems in both fault-free and faulty operations of the wind turbine.  相似文献   

15.
16.
Power systems are subject to stochastic faults and process random noise. The faults (due to e.g. lightning strokes) can be temporary or permanent. When a lightning stroke hits a transmission line, the circuit breakers open to clear the fault and reclose. The resulting parameters changes are modelled as a discrete-time Markov jumps in this paper using the practical statistical failure rates. System parameters are also subject to random noise e.g. line reactance’s depend on the conductors spacing which in turn depends on stochastic wind speeds. This paper presents a novel power system excitation control robust against such stochastic uncertainties. The design is based on a derived sufficient condition in the framework of linear matrix inequalities (LMI), and the attracting ellipsoid approach. The effectiveness of the proposed control is tested on a multi-machine power system.  相似文献   

17.
This paper presents a novel approach to address the decentralized fault tolerant model predictive control of discrete-time interconnected nonlinear systems. The overall system is composed of a number of discrete-time interconnected nonlinear subsystems at the presence of multiple faults occurring at unknown time-instants. In order to deal with the unknown interconnection effects and changes in model dynamics due to multiple faults, both passive and active fault tolerant control design are considered. In the Active fault tolerant case an online approximation algorithm is applied to estimate the unknown interconnection effects and changes in model dynamics due to multiple faults. Besides, the decentralized control strategy is implemented for each subsystem with the model predictive control algorithm subject to some constraints. It is showed that the proposed method guarantees input-to-state stability characterization for both local subsystems and the global system under some predetermined assumptions. The simulation results are exploited to illustrate the applicability of the proposed method.  相似文献   

18.
In this paper, we present a fault-tolerant control (FTC) framework for a class of nonlinear networked control systems (NCSs). Firstly, the plant is transformed into two subsystems with one of them decoupled from the system fault. Then, the nonlinear observer is designed to provide the estimation of unmeasurable state and modelling uncertainty, which are used to construct fault estimation algorithm. Considering the sampling intervals occurred by net, a fault-tolerant control method is proposed for such nonlinear NCSs using the impulsive system techniques. The controller gain and the maximum sampling interval, which make the faulty system stable are given. An example is included to show the efficiency of the proposed method.  相似文献   

19.
This paper concerns the fault detection (FD) problem for a class of discrete-time systems subject to data missing and randomly occurring nonlinearity modeled by two independent Bernoulli distributed random variables. We propose to design a set of fault detection filters, or residual generation systems, corresponding to each of the fault components, to guarantee that each subsystem is mean square stable and satisfies a prescribed disturbance attenuation level. Sufficient conditions are established in the form of linear matrix inequalities (LMIs). System faults can be effectively detected by generating the residues and comparing them with the dynamic fault thresholds. A quadrotor vehicle example with faults on angles and angular rates illustrates and verifies the effectiveness of the proposed algorithm.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号