首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This paper is concerned with the interval state estimation problem for continuous-time positive linear systems under intermittent denial-of-service (DoS) attacks. To solve the problem, two types of estimate strategies are proposed. One is using the interval observer at all times, the other is using the interval observer in the absence of attacks but using, instead, the interval predictor otherwise. To facilitate the analysis, the interval state estimation problem is reformulated into the positivity and stability analysis of the associated error system. Then, stability conditions and disturbance attenuation characterization of the error systems for the two strategies are established via a mode-dependent Lyapunov approach. Roughly speaking, it is shown that the interval estimation accuracy of the former strategy is higher than the latter when the open loop system is stable. Finally, several numerical examples are provided to illustrate the ascendancy of the proposed estimation strategies.  相似文献   

2.
This paper is concerned with a security problem about malicious integrity attacks in state estimation system, in which multiple smart sensors locally measure information and transmit it to a remote fusion estimator though wireless channels. A joint constraint is considered for the attacker behaviour in each channel to keep stealthiness under a residual-based detector on the remote side. In order to degrade the estimator performance, the attacker will maximize the trace of the remote state estimation error covariance which is derived based on Kalman filter theory. It is proved that the optimal linear attack strategy design problem is convex and finally turned into a semi-definite programming problem. In addition, the tendency of attack behaviour on recursive and fixed Kalman filter system is analyzed. Several examples are given to illustrate the theoretical results.  相似文献   

3.
In this paper, we consider a malicious attack issue against remote state estimation in cyber-physical systems. Due to the limited energy, the sensor adopts an acknowledgment-based (ACK-based) online power schedule to improve the remote state estimation. However, the feedback channel will also increase the risk of being attacked. The malicious attacker has the ability to intercept the ACK information and modify the ACK signals (ACKs) from the remote estimator. It could induce the sensor to make poor decisions while maintaining the observed data packet acceptance rate to keep the attacker undetected. To maximize the estimation error, the attacker will select appropriate attack times so that the sensor makes bad decisions. The optimal attack strategy based on the true ACKs and the corrosion ACKs is analytically proposed. The optimal attack time to modify the ACKs is the time when the sensor’s tolerance, i.e., the number of consecutive data packet losses allowed, is about to reach the maximum. In addition, such an optimal attack strategy is independent of the system parameters. Numerical simulations are provided to demonstrate the analytical results.  相似文献   

4.
In this paper, we investigate the optimal denial-of-service attack scheduling problems in a multi-sensor case over interference channels. Multiple attackers aim to degrade the performance of remote state estimation under attackers’ energy constraints. The attack decision of one attacker may be affected by the others while all attackers find their own optimal strategies to degrade estimation performance. Consequently, the Markov decision process and Markov cooperative game in two different information scenarios are formulated to study the optimal attack strategies for multiple attackers. Because of the complex computations of the high-dimensional Markov decision process (Markov cooperative game) as well as the limited information for attackers, we propose a value iteration adaptive dynamic programming method to approximate the optimal solution. Moreover, the structural properties of the optimal solution are analyzed. In the Markov cooperative game, the optimal joint attack strategy which admits a Nash equilibrium is studied. Several numerical simulations are provided to illustrate the feasibility and effectiveness of the main results.  相似文献   

5.
In this paper, we present a secure distributed estimation strategy in networked systems. In particular, we consider distributed Kalman filtering as the estimation method and Paillier encryption, which is a partially homomorphic encryption scheme. The proposed strategy protects the confidentiality of the transmitted data within a network. Moreover, it also secures the state estimation computation process. To this end, all the algebraic calculations needed for state estimation in a distributed Kalman filter are performed over the encrypted data. As Paillier encryption only deals with integer data, in general, this, in turn, provides significant quantization error in the computation process associated with the Kalman filter. However, the proposed estimation approach handles quantized data in an efficient way. We provide an optimality and convergence analysis of our proposed method. It is shown that state estimation and a covariance matrix associated with the proposed method remain with a certain small radius of those of a conventional centralized Kalman filter. Simulation results are given to further demonstrate the effectiveness of the proposed scheme.  相似文献   

6.
This paper is concerned with the problem of simultaneous fault detection and control of switched systems under the asynchronous switching. A switching law and fault detection/control units called fault detector/controllers are designed to guarantee the fault sensitivity and robustness of the closed-loop systems. Different from the existing results, a state reset strategy is introduced in the process of fault detection/control, which reduces the conservatism caused by the jump of multiple Lyapunov functions at switching instants. Further, the proposed strategy is only dependent the state of fault detector/controllers, which is available when the system state is invalid. Finally, by using a performance gain transform technique, non-convex fault sensitivity conditions are converted into the convex error attenuation ones. This further improves the fault detection effect. A numerical example is given to demonstrate the effectiveness of the proposed results.  相似文献   

7.
《Journal of The Franklin Institute》2022,359(18):11155-11185
Nowadays, cyber-physical systems (CPSs) have been widely used in various fields due to their powerful performance and low cost. The cyber attacks will cause security risks and even huge losses according to the universality and vulnerability of CPSs. As a typical network attack, deception attacks have the features of high concealment and strong destructiveness. Compared with the traditional deception attack models with a constant value, a deception attack with random characteristics is introduced in this paper, which is difficult to identify. In order to defend against such deception attacks and overcome energy constraints in CPSs, the secure state estimation and the event-triggered communication mechanism without feedback information are co-considered to reconcile accuracy of estimation and energy consumption. Firstly, an event-triggered augmented state estimator is proposed for secure state estimation and attack identification. Then, under the ideology of equivalence, the augmented state estimator is derived as a concise two-stage estimator with reduced order. The two-stage estimator can perform the secure state estimation and attack identification respectively. The estimators ensure the accuracy of attack identification well since not treating attack information as the trigger event. Afterward, the comparison of the computational complexity of these two algorithms is analyzed. Finally, an example of a target tracking system is supplied to prove the effectiveness and efficiency of the proposed algorithm.  相似文献   

8.
《Journal of The Franklin Institute》2022,359(18):10726-10740
In this paper, the secure transmission issue of a remote estimation sensor network against eavesdropping is studied. A powerful eavesdropper overhears the measurement data sent through the communication channels between the sensors and the remote estimator, and estimates system state illegally, which threatens the system information security. Different from the existing anti-eavesdropping design approaches, a stealthy artificial noise (AN) strategy is proposed to prevent eavesdroppers from deciphering encryption policy by hiding the encryption process from eavesdroppers. It has the same dynamical process with each sensor’s measurement to guarantee that the estimation error of the eavesdropper is unbounded while its observation residual variance keeps in certain bound and converges to 0, and further ensure system security without alerting the eavesdropper. It is proved that the strategy is feasible whenever the eavesdropper starts to wiretap. The selection of sensors that needs to be encrypted is further given by solving an optimization problem. The effectiveness of the proposed algorithm is verified by two simulation examples.  相似文献   

9.
This paper considers the output feedback sliding-mode control for an uncertain linear system with unstable zeros. Based on a frequency shaping design, a dynamic-gain observer is used for state estimation of an uncertain system. This paper confirms that (1) state estimation is globally stable in a practical sense, (2) the resultant error can be arbitrarily small with respect to the system uncertainties, and (3) the proposed sliding-mode control can drive the uncertain system state into an arbitrarily small residual set around the origin, such that the size of residual set is controlled by the filter design. Moreover, the proposed control design is inherently robust to measurement noise; the effect of measurement noise can effectively be attenuated without any additional work.  相似文献   

10.
In this paper, a novel composite controller is proposed to achieve the prescribed performance of completely tracking errors for a class of uncertain nonlinear systems. The proposed controller contains a feedforward controller and a feedback controller. The feedforward controller is constructed by incorporating the prescribed performance function (PPF) and a state predictor into the neural dynamic surface approach to guarantee the transient and steady-state responses of completely tracking errors within prescribed boundaries. Different from the traditional adaptive laws which are commonly updated by the system tracking error, the state predictor uses the prediction error to update the neural network (NN) weights such that a smooth and fast approximation for the unknown nonlinearity can be obtained without incurring high-frequency oscillations. Since the uncertainties existing in the system may influence the prescribed performance of tracking error and the estimation accuracy of NN, an optimal robust guaranteed cost control (ORGCC) is designed as the feedback controller to make the closed-loop system robustly stable and further guarantee that the system cost function is not more than a specified upper bound. The stabilities of the whole closed-loop control system is certified by the Lyapunov theory. Simulation and experimental results based on a servomechanism are conducted to demonstrate the effectiveness of the proposed method.  相似文献   

11.
In this paper, the event-triggered distributed H state estimation problem is investigated for a class of state-saturated systems with randomly occurring mixed delays over sensor networks. The mixed delays, which comprise both discrete and distributed delays, are allowed to occur in a random manner governed by two mutually independent Bernoulli distributed random variables. In order to alleviate the communication burden, an event-triggered mechanism is utilized for each sensor node to decide whether or not its current information should be broadcasted to its neighbors. The aim of this paper is to design event-triggered state estimators such that the error dynamics of state estimation is exponentially mean-square stable with a prescribed H performance index. By resorting to intensive stochastic analysis, sufficient conditions are first derived to guarantee the existence of the desired estimators, and the parameters of the desired distributed estimators are then obtained in light of the feasibility of a certain set of matrix inequalities. A numerical example is employed to illustrate the usefulness of the proposed distributed estimation algorithm.  相似文献   

12.
This paper focuses on state estimation issues for networked control systems (NCSs) with both control input and observation packet dropouts over user datagram protocol (UDP) communication channels. For such systems, which are usually known as UDP-like systems, the computation cost of the optimal estimator is too high to afford in practice due to exponential growth of complexity. Although quite a few suboptimal estimators could be alternatives for improving the computational efficiency, yet researches on the stability of suboptimal estimators are rarely reported. Based on the generalized pseudo-Bayesian (GPB) algorithm, an efficient suboptimal algorithm is developed for UDP-like systems. More crucially, a sufficient condition is obtained, which guarantees the stability of its mean estimation error covariance. This stability condition explicitly expresses that the rate of observation packet dropout is a critical factor in determining the stability of the proposed GPB estimator, while the rate of control input packet dropout has no influence on it. The results are illustrated by numerical examples.  相似文献   

13.
In this paper, the state estimation problem for discrete-time networked systems with communication constraints and random packet dropouts is considered. The communication constraint is that, at each sampling instant, there is at most one of the various transmission nodes in the networked systems is allowed to access a shared communication channel, and then the received data are transmitted to a remote estimator to perform the estimation task. The channel accessing process of those transmission nodes is determined by a finite-state discrete-time Markov chain, and random packet dropouts in remote data transmission are modeled by a Bernoulli distributed white sequence. Using Bayes’ rule and some results developed in this study, two state estimation algorithms are proposed in the sense of minimum mean-square error. The first algorithm is optimal, which can exactly compute the minimum mean-square error estimate of system state. The second algorithm is a suboptimal algorithm obtained under a lot of Gaussian hypotheses. The proposed suboptimal algorithm is recursive and has time-independent complexity. Computer simulations are carried out to illustrate the performance of the proposed algorithms.  相似文献   

14.
In this paper, based on Stirling’?s polynomial interpolation formula, the Second-order Central Difference Predictive Filter (CDPF2) is proposed for nonlinear estimation. To facilitate the new method, the algorithm flow of CDPF2 is given first. Then, the theoretical deductions demonstrate that the estimated accuracy of the model error and system state for the CDPF2 is higher than that of the conventional PF. In addition, the stochastic boundedness and the error behavior of CDPF2 is analyzed for general nonlinear systems in a stochastic framework. The theoretical analysis presents that the estimation error will remain bounded and the covariance will remain stable if the system?s initial estimation error, disturbing noise terms and model error are small enough, which is the core part of the CDPF2 theory. All of the results have been demonstrated by numerical simulations for a nonlinear example system.  相似文献   

15.
This paper is concerned with the adaptive control problem for a class of linear discrete-time systems with unknown parameters based on the distributed model predictive control (MPC) method. Instead of using the system state, the state estimate is employed to model the distributed state estimation system. In this way, the system state does not have to be measurable. Furthermore, in order to improve the system performance, both the output error and its estimation are considered. Moreover, a novel Lyapunov functional, comprised of a series of distributed traces of estimation errors and their transposes, has been presented. Then, sufficient conditions are obtained to guarantee the exponential ultimate boundedness of the system as well as the asymptotic stability of the error system by solving a nonlinear programming (NP) problem subject to input constraints. Finally, the simulation examples is given to illustrate the effectiveness and the validity of the proposed technique.  相似文献   

16.
In this paper, a security consistent tracking control scheme with event-triggered strategy and sensor attacks is developed for a class of nonlinear multi-agent systems. For the sensor attacks on the system, a security measurement preselector and a state observer are introduced to combat the impact of the attacks and achieve secure state estimation. In addition, command filtering technology is introduced to overcome the “complexity explosion” caused by the use of the backstepping approach. Subsequently, a new dynamic event-triggered strategy is proposed, in which the triggering conditions are no longer constants but can be adjusted in real time according to the adaptive variables, so that the designed event-triggered mechanism has stronger online update ability. The measurement states are only transmitted through the network based on event-triggered conditions. The proposed adaptive backstepping algorithm not only ensures the security of the system under sensor attacks but also saves network resources and ensures the consistent tracking performance of multi-agent systems. The boundedness of all closed-loop signals is proved by Lyapunov stability analysis. Simulation examples show the effectiveness of the control scheme.  相似文献   

17.
In this paper, the observer-based sliding mode control (SMC) problem is investigated for a class of uncertain nonlinear neutral delay systems. A new robust stability condition is proposed first for the sliding mode dynamics, then a sliding mode observer is designed, based on which an observer-based controller is synthesized by using the SMC theory combined with the reaching law technique. Then, a sufficient condition of the asymptotic stability is proposed in terms of linear matrix inequality (LMI) for the overall closed-loop system composed of the observer dynamics and the state estimation error dynamics. Furthermore, the reachability problem is also discussed. It is shown that the proposed SMC scheme guarantees the reachability of the sliding surfaces defined in both the state estimate space and the state estimation error space, respectively. Finally, a numerical example is given to illustrate the feasibility of the proposed design scheme.  相似文献   

18.
In this paper, we study the problem of remote state estimation on networks with random delays and unavailable packet sequence due to malicious attacks. Two maximum a posteriori (MAP) schemes are proposed to detect the unavailable packet sequence. The first MAP strategy detects the packet sequence using data within a finite time horizon; the second MAP strategy detects the packet sequence by a recursive structure, which effectively reduces the computation time. With the detected packet sequence, we further design a linear minimum mean-squared error (LMMSE) estimation algorithm based on smoothing techniques, rather than using the classic prediction and update structure. A wealth of information contained in the combined measurements is utilized to improve the estimation performance. Finally, the effectiveness of the proposed algorithms is demonstrated by simulation experiments.  相似文献   

19.
In this paper, new conditions for the stabilisation and transient performance improvement of linear parameter-varying (LPV) systems considering the gain-scheduling (GS) strategy are proposed. Our work is focused on dealing with LPV systems under the major practical constraint of incomplete state measurement. In that sense, we propose two new control design strategies based on linear matrix inequalities (LMI). First, for coping with the general case where only a subset of the state variables is measured, we propose a new static output feedback (SOF) strategy. Second, for dealing with the particular case where only accelerometers signals are available, we bring new synthesis conditions for the design of state derivative feedback (SDF) controllers. Further from stability, our proposed methods are able to induce better transient response by including pole placement LMI constraints in the control design. For illustrating our contribution efficacy, we present a couple of design examples.  相似文献   

20.
This paper is concerned with the event-triggered H state estimation problem for a class of discrete-time complex networks subject to state saturations, quantization effects as well as randomly occurring distributed delays. A series of Bernoulli distributed random variables is utilized to model the random occurrence of distributed delays. For the energy-saving purpose, an event-triggered mechanism is proposed to decide whether the current quantized measurement should be transmitted to the estimator or not. For the state-saturated complex networks, our aim is to design event-triggered state estimators that guarantee both the exponential mean-square stability of and the H performance constraint on the error dynamics of the state estimation. Stochastic analysis is conducted, in combination with the Lyapunov functional approach, to derive sufficient conditions for the existence of the desired estimators whose gain matrices are obtained by solving a set of matrix inequalities. An illustrative example is exploited to show the usefulness of the estimator design algorithm proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号