首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
This paper studies the finite-time localization and multicircular circumnavigation problem of an unknown stationary target via a networked multi-agent system using bearing-only measurements. To enhance the convergence rate of estimation, a novel estimator is developed to enable the agent to localize the target in finite time. At the same time, with the estimated target position, a distributed controller is designed such that the agents circumnavigate the target along different orbits with any prescribed angular spacing in finite time. In terms of Lyapunov theory and cascade control strategy, finite-time stability of the overall system including the estimator and controller are analyzed rigorously. Besides, the proposed algorithms guarantee that the agents can keep a safe distance from the target in the whole movement process, and high angular velocity can be avoided even if the circumnavigation radius becomes small. Finally, to corroborate the theoretical results, two simulation examples are given.  相似文献   

2.
This paper investigates the tracking control problem of nonholonomic multiagent systems with external disturbances. For this purpose, distributed finite time controllers (DFCs) based on the terminal sliding mode method are proposed to ensure that states of the agents track the states of the target in a finite time. Furthermore, a distributed estimator (DE) is designed for each agent to estimate the target's states. The stability analysis of DFCs and DE is also considered. Simulation examples demonstrate the promising performance of the proposed algorithms.  相似文献   

3.
The tracking problem of high-order nonlinear multi-agent systems (MAS) with uncertainty is solved by designing adaptive sliding mode control. During the tracking process, node failures are possible to occur, a new agent replaces the failed one. Firstly, a distributed nonsingular terminal sliding mode(NTSM) control scheme is designed for the tracking agents. A novel continuous function is designed in the NTSM to eliminate the singularity and meanwhile guarantee the estimation of finite convergence time. Secondly, the unknown uncertainties in the tracking agents are compensated by proposing an adaptive mechanism in the NTSM. The adaptive mechanism adjusts the control input through estimating the derivative bound of the unknown uncertainties dynamically. Thirdly, the tracking problem with node failures and agent replacements is further investigated. Based on the constructed impulsive-dependent Lyapunov function, it is proved that the overall system will track the target in finite time even with increase of jump errors. Finally, comparison simulations are conducted to illustrate the effectiveness of proposed adaptive nonsingular terminal sliding mode control method for tracking systems suffering node failures.  相似文献   

4.
This paper investigates finite-time formation control problems of heterogeneous multi-agent systems subject to mismatched and matched disturbances. The studied agents are modelled with both different orders and dimensions. To achieve the desired finite-time formation control goal, a novel signal generator based finite-time formation control scheme is proposed, which is composed of two parts. In the first part, a distributed finite-time signal generator is established to produce formation references for the agents in finite time. In the second part, based on finite-time observer technique and homogeneous systems theory, a kind of composite anti-disturbance controllers are constructed for the agents to track the formation references in finite time. In this way, the studied multi-agent system completes the desired finite-time formation control task. Compared with the existing results, the proposed control scheme solves the disturbed finite-time formation control problems with both different agents’ orders and dimensions, simplifies the formation controller design by using a modular design philosophy, and makes the agents have a plug and play feature. A simulation example is shown to validate the effectiveness of the proposed control scheme.  相似文献   

5.
In this paper, we consider the finite-time leaderless consensus control of a group of Euler-Lagrangian systems with backlash nonlinearities. A finite time distributed continuous control scheme is proposed for the multi-agent systems. It is shown that the output of the Euler-Lagrangian systems reach consensus within finite time. Transient performances in terms of convergence rate is also analyzed. Finally simulation results are carried out to verify the effectiveness of the proposed schemes.  相似文献   

6.
This work considers a distributed adaptive output feedback control problem for nonlinear constrained multi-agent systems (MAS) in the prescribed finite time. To begin with, a state observer is constructed to estimate the unmeasurable state. Then, we develop a novel observer based distributed adaptive prescribed finite time output feedback control algorithm by incorporating the prescribed finite-time control technique into the backstepping design method. Through Lyapunov stability theory, it can be shown that all signals of MASs are bounded, the tracking errors converge to the adjustable regions around the origin within the pre-given error accuracy and settling time, and all states keep in the prescribed constraint regions. Finally, a simulation example verifies the efficacy of the obtained theoretical results.  相似文献   

7.
This paper investigates the finite-time cooperative circumnavigation control of multiple second-order agents, in which the agents should surround a moving target with desired formation and circular velocity based on local information. Firstly, the controller design is transformed into design control parameters such that the error system, including distance error, speed error and angle error, is finite-time consensus. The error system is viewed as a cascaded system containing two second-order subsystems, and then a distributed finite-time controller composed of two parts is delivered. The finite-time stability of the entire system is given by employing cascaded control theory. One significant advantage of the proposed controller is that it allows the agents to converge to desired trajectory in a finite time instead of asymptotically. Another merit is that the desired formation is an extensive case and unlimited, including different tracking radii and angular spacing. Furthermore, the proposed controller can be implemented by each agent in its local frame, utilizing only local information. These properties significantly extend the application scope of cooperative circumnavigation. Finally, simulations are carried out to validate the effectiveness of the proposed method.  相似文献   

8.
This paper investigates the formation control of interconnected second-order systems. Each agent is assumed to be capable of measuring its own absolute velocity and the relative positions with respect to its neighboring agents, whereas the target formation is described by absolute positions of all agents in a global coordinate. For such formation control problems, no distributed control policy was reported in existing literature. This paper focuses on the string connection structure of the agents and proposes a distributed control policy that takes the form of purely state feedback without incorporating any feed-forward component. The closed-loop system equation is characterized by an oscillation matrix whose entries are the feedback controller gains. Formation control is accomplished by formulating the agents’ target positions as feedback controller gains. Moreover, it is shown that for agent models described by double integrators, each of the agents located at the two endpoints of the string structure should know its own absolute position. For a class of agent models where each agent’s acceleration depends on its own position, the control laws do not need to use the absolute position. For both system models, the target formations that are asymptotically reachable by the proposed control laws are specified explicitly. Numerical simulations have been conducted to illustrate the effectiveness of the theoretical results.  相似文献   

9.
In this paper, the specified-time bearing-based formation control problem is investigated via a dynamic gain approach. Both the leader-follower and leaderless cases for single- and double-integral multi-agent systems are considered with bearing measurement, respectively. By considering the communication graph as bearing rigid, distributed bearing-based controllers with a time-varying gain are designed. By using time transformation method and Lyapunov stability theory, the close-loop systems under the proposed protocols can achieve the target formation within the specified time. Comparing with some existing results, the proposed approaches can make multi-agent systems converge to the desired formation within any preset time without dependence on the initial conditions or system parameters. Finally, some simulations and experiments are presented to demonstrate the effectiveness of the proposed algorithms.  相似文献   

10.
《Journal of The Franklin Institute》2022,359(18):10578-10601
In this paper, a distributed control architecture is presented for addressing the cooperative perimeter surveillance of rectangular areas for multi-agent system whose dynamics is described by double integrator models subject to exogenous bounded disturbances. In particular, a novel methodology to generate proper state trajectories of a swarm of agents is provided and then exploited as references for the underlying model predictive controllers bank. Specifically, the swarm is first driven along the perimeter of a rectangular strip and next imposed to enter a given containment region while remaining simultaneously outside a forbidden region around a prescribed target. Steady-state conditions are analyzed and sufficient conditions derived in terms of the control law parameters. Simulation results put in light the main properties of the control architecture that is designed to adequately switch between two different distributed algorithms in order to guarantee constraints satisfaction within the capturing region despite any disturbance realization.  相似文献   

11.
《Journal of The Franklin Institute》2022,359(18):10602-10627
This paper considers the finite-time distributed economic dispatch problem in smart grids: the power generated by individual generators are designed to satisfy a certain demand while minimizing the total generation cost in a distributed manner, which guarantees the convergence in finite time. The proposed method facilitates the solution of real time power dispatch problems. First, a class of distributed economic dispatch algorithm is proposed to achieve the optimal solution in finite-time with and without capacity limitations. Second, in order to reduce the information exchange requirements, a distributed, asynchronous event-triggered communication scheme is established which is free of Zeno with guaranteed finite-time convergence. Furthermore, both proposed algorithms are robust to the time-varying communication networks. Simulation results illustrate the effectiveness and scalability of the distributed algorithms.  相似文献   

12.
This article focuses on time delay switch (TDS) attacks on power networks subject to highly nonlinear and interconnection. T–S model is utilized to represent each nonlinear power subsystem in the network. In order to attenuate adverse impacts from TDS attacks, a novel control technique of estimation and compensation is proposed. Combined with the method of finite time boundedness (FTB), transient stability of power systems could be achieved. First, an augmented fuzzy observer is constructed to capacitate a synchronous estimation for system states and TDS attacks, which ensures that the estimation error is limited via the intersection operation of ellipsoids within a specified finite time interval. Then, a compensation technique is employed to attenuate the influence from TDS attacks. Finally, simulation results of a distributed power network show the efficacy of the proposed method against TDS attacks.  相似文献   

13.
The event-triggered consensus control for second-order multi-agent systems subject to actuator saturation and input time delay, is investigated in this paper. Based on the designed triggering function, a distributed event-triggered control strategy is presented to drive the system to achieve consensus. Communication energy can be saved as the agents send their state information only at infrequent event instants, the continuous communication among agents is not necessary. Lyapunov-Krasovskii functional is used together with linear matrix inequality technique to analyze the stability of the closed-loop error system. The results show that agents achieve exponentially consensus under the proposed controller. Furthermore, the bounds of solution are obtained by establishing the differential equation associated with the first delay interval. The initial domain is estimated by optimizing the linear matrix inequalities. Finally, simulation examples are presented to illustrate the effectiveness of the proposed controller.  相似文献   

14.
We study scaled group consensus problems of the first/second-order multi-agent dynamics under continuous/discrete-time settings. For a directed multi-agent network with finite sub-networks, the scaled group consensus is concerned with this case that all the sub-networks reach consensus, separately, while maintain the given ratios among the multiple consensus. First/second-order distributed protocols with continuous/discrete data are designed to solve the scaled group consensus problems, and then necessary and sufficient criteria are established to guarantee the agents’ states reaching the scaled group consensus asymptotically applying both algebraic and analytical tools. Finally, the effectiveness of the theoretical results are verified by several simulation examples.  相似文献   

15.
This paper solves the finite-time consensus problem for discrete time multi-agent systems (MASs) where agents update their values via linear iteration and the interactions between them are described by signed digraphs. A sufficient condition is presented that the agents can reach consensus on any given linear function of multiple initial signals in finite time, i.e., there exists an eventually positive Laplacian-based matrix associated with the underlying graph. We prove that the linear iterative framework “ratio consensus” developed for unsigned graphs in the literature can be extended to the computation for signed graphs with appropriate modifications. Our method weakens the limitation of the iterative framework on the “marginal Schur stability” of the weight matrix without increasing the computational complexity. Reaching average consensus on unsigned graphs as in the literature is regarded as a special case of our algorithm. Two illustrative examples are presented to demonstrate the correctness of the proposed results.  相似文献   

16.
This paper investigates the prescribed-time containment control problem for multi-agent systems with high-order nonlinear dynamics under a directed communication topology. Firstly, in view of the fact that only some follower agents can directly access the state information of multiple leader agents, a prescribed-time distributed observer is put forward to estimate the convex hull spanned by these leaders. Then, with the help of the distributed observer, a novel containment control method is developed for each follower based on a time-varying scaling function, so that all followers can converge to the convex hull spanned by the states of multiple leaders within a prescribed time. The comparison with the finite-time and fixed-time control methods differs in that the convergence time of the method proposed in this paper is independent of the initial conditions and control parameters and can be arbitrarily preassigned according to actual needs. Finally, an example is given to demonstrate the usefulness of the prescribed-time containment control method.  相似文献   

17.
This paper investigates the consensus tracking problem of leader-follower multi-agent systems. Different from most existing works, dynamics of all the agents are assumed completely unknown, whereas some input-output data about the agents are available. It is well known from the Willems et al. Fundamental Lemma that when inputs of a linear time-invariant (LTI) system are persistently exciting, all possible trajectories of the system can be represented in terms of a finite set of measured input-output data. Building on this idea, the present paper proposes a purely data-driven distributed consensus control policy which allows all the follower agents to track the leader agent’s trajectory. It is shown that for a linear discrete-time multi-agent system, the corresponding controller can be designed to ensure the global synchronization with local data. Even if the data are corrupted by noises, the proposed approach is still applicable under certain conditions. Numerical examples corroborate the practical merits of the theoretical results.  相似文献   

18.
This paper studies the multi-target localization and circumnavigation problem for a networked multi-agent system using bearing-only measurements. A more general case that only some of the agents are responsible for measuring the bearing angles with respect to the targets is considered. First, a novel estimator is developed for the agents to locate the targets collaboratively, based on which the geometric center of multi-target is reconstructed by each agent. Then, an estimator-based distributed controller is proposed to steer the agents, such that they can enclose the targets along different circles centered at the geometric center of multi-target with any desired angular spacing. By using Lyapunov stability theory, graph theory and consensus algorithm, global exponential stability of the overall system is analyzed rigorously. Besides, it is proved that bounded angular velocity of each agent and collision avoidance between the target and agent can be guaranteed in the whole movement process. Finally, numerical simulations are given to corroborate the theoretical results.  相似文献   

19.
This paper focuses on the solution to a formation-aggregation problem concerned with a cluster of quadrotors. In particular, all the quadrotors are steered towards a target region while reaching an expected formation configuration. However, only a subset of quadrotors, treated as leaders, have access to the projections onto the target region; and in the meantime, each quadrotor just exchanges information with its neighbors. It is assumed that the quadrotors without the knowledge of the target region, treated as followers, are within the convex hull of the leaders in the expected configuration. A distributed formation-aggregation control algorithm is proposed under the hierarchical framework. To be specific, resorting to an auxiliary dynamic system with a distributed idea, a command force is first synthesized in the position loop for the concerned formation-aggregation objective. Next, an applied thrust and a command attitude are extracted from the synthesized command force. Finally, an applied torque is synthesized in the attitude loop such that the attitude tracking to the command one is realized. In terms of the Lyapunov theory, it is shown that the leaders are capable of guiding the overall quadrotor cluster into the target region in the expected configuration. Simulations are carried out to validate the theoretical results.  相似文献   

20.
In this paper, the distributed optimal consensus control of a group of Euler-Lagrange systems under input saturation is considered. The objective function is only known by each agent itself. Meanwhile it is assumed that the velocities of the systems are unknown. To solve this problem, the filters and observers are designed for each agent. The magnitudes of the control input could be guaranteed within the bounds which are given in advance. It is shown that global optimal consensus control could be achieved under the proposed bounded controllers. The states of all agents will reach a consensus which minimizes the sum of the objective functions of all agents. Simulation results illustrate the effectiveness of the control schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号