首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Specific to the double saturation constraints of input and output in multimotor network systems, an anti-windup control framework with distributed total-amount optimal coordination is constructed, and a new saturated super-twisting sliding mode control strategy is designed in this paper. First, a mathematical model of direct torque and flux control of a multipermanent magnet synchronous motor is established. Next, the consistency of the total amount and output saturation are taken as the constraint conditions. Considering the lowest total energy consumption, the optimal multi-axis total-amount coordinated allocation algorithm is designed on the basis of the Karush-Kuhn-Tucker (KKT) condition. Then, the input saturation is introduced into the dynamic integral part of the super-twisting algorithm. A new saturated super-twisting sliding mode tracking control algorithm is designed, and the barrier Lyapunov function is used to prove the input constraint. Finally, the Matlab/Simulink simulation and RT-LAB semi-physical experiments verify that the anti-windup control strategy of distributed total-amount optimal coordination can effectively solve the double saturation constraints of input and output.  相似文献   

2.
In consideration of target angular velocity uncertainty and external disturbance, a modified dynamic output feedback sliding mode control (DOFSMC) method is proposed for spacecraft autonomous hovering system without velocity measurements. As a stepping-stone, an additional dynamic compensator is introduced into the design of sliding surface, then an augmented system is reconstructed with the system uncertainty and external disturbance. Based on the linear matrix inequality (LMI), a sufficient condition is given, which guarantees the disturbance attenuation performance of sliding mode dynamics. By introducing an auxiliary variable, a modified version of adaptive sliding mode control (ASMC) law is designed, and the finite-time stability of sliding variable is established by the Lyapunov stability theory. Compared with other results, the proposed method is less conservative and can decrease the generated control input force significantly. Finally, two simulation examples are performed to validate the effectiveness of the proposed method.  相似文献   

3.
In this work, a model-free adaptive sliding mode control (ASMC) methodology is proposed for synchronization of chaotic fractional-order systems (FOSs) with input saturation. Based on the frequency distributed model and the non-integer version of the Lyapunov stability theorem, a model-free ASMC method is designed to overcome the chaotic behavior of the FOSs. The control inputs are free from the nonlinear-linear dynamical terms of the system because of utilizing the boundedness feature of the states of chaotic FOSs. Moreover, a new medical image encryption scheme is tentatively proposed according to our synchronization method, and its effectiveness is verified by numerical simulations. Furthermore, the performance and security analyses are given to confirm the superiority of the proposed encryption scheme, including statistical analysis, key space analysis, differential attack analysis, and time performance analysis.  相似文献   

4.
In this paper, an adaptive concave barrier function scheme coupled with the non-singular terminal sliding mode control technique is proposed for finite-time tracking control of the under-actuated nonlinear system in the existence of model uncertainty, external disturbance and input saturation. Firstly, the dynamical equation of under-actuated nonlinear n-order system is expressed under model uncertainty, external disturbance and input saturation. Secondly, for the improvement of stability performance of the system in the existence of input saturation, a compensation system is designed to overcome the constraint on the control input. Afterward, the tracking errors between actual states of the system and differentiable reference signals are defined and the sliding surface based on the defined tracking errors is presented. Then, for gaining the better transient and steady-state performance of the closed-loop system, the prescribed performance control scheme is adopted. Based on this method, the transformed prescribed form of the previous determined sliding surface is obtained to ensure that the sliding surface can reach to a predefined region. Afterward, for assurance of the finite-time reachability of transformed sliding surface, the nonsingular terminal sliding surface is recommended. In addition, for the compensation of the model uncertainty and external disturbance existed in the system, the adaptive-based concave barrier function technique is used to estimate the unknown bounds of uncertainty and exterior disturbance. Finally, for demonstration of the proposed control method, the simulations and experimental implementation are done on the air levitation system.  相似文献   

5.
Robust sliding mode guidance and control for soft landing on small bodies   总被引:1,自引:0,他引:1  
The variable structure control (VSC) with sliding mode is presented to design a tracking control law to ensure the fast and accurate response and robustness of guidance law in this paper. First, the small body dynamic equation is deduced in the landing site coordinate system. Second, the desired trajectory is planned in the condition of safe soft landing constraints. Third, the guidance law based on VSC is designed to track the desired trajectory and succeed in landing on the surface of small body. Finally, the guidance and control algorithm is formed and the effectiveness of algorithm is verified by numerical Monte Carlo simulations.  相似文献   

6.
This paper addresses the observer-based dynamic event-triggered (DET) sliding mode control (SMC) problem for fuzzy singular semi-Markovian jump systems (FSS-MJSs) subject to generalized dissipative performance, in which a novel double-quantized structure is reasonably merged into a unified model. The main aim of this paper is to develop a mode-dependent adaptive sliding mode control (ASMC) law through the DET rule, which not only makes the closed-loop systems mean-square admissibility and generalized dissipative, but also the finite-time reachability around the predefined sliding mode surface (SMS) can be achieved. Firstly, in order to improve the data transmission efficiency and save network bandwidth resources, DET and doubled-quantized-based control protocol are introduced, in which the event-based threshold function is dynamically regulated and the data of input and output are both quantized; Secondly, due to the sensor information constraints, system state information is not always obtained in practice, hence, a suitable observer design can make up for this defect. Meantime, in terms of elegant linearization technique and implicit function theorem, the uniqueness of the solution for FSS-MJSs is also established; Additionally, by making use of the Lyapunov functional and linear matrix inequality (LMI) technique, both the desired SMC gains, observer gains and triggering parameter matrices are co-designed, more than that the derivative singular matrix is also integrated into the whole design process such that the derived conditions are much more easily to be checked; Finally, a numerical example and a practical application example are co-given to verify the effectiveness of our design mentality.  相似文献   

7.
This paper is concerned with the adaptive sliding mode control (ASMC) design problem for a flexible air-breathing hypersonic vehicle (FAHV). This problem is challenging because of the inherent couplings between the propulsion system, the airframe dynamics and the presence of strong flexibility effects. Due to the enormous complexity of the vehicle dynamics, only the longitudinal model is adopted for control design in the present paper. A linearized model is established around a trim point for a nonlinear, dynamically coupled simulation model of the FAHV, then a reference model is designed and a tracking error model is proposed with the aim of the ASMC problem. There exist the parameter uncertainties and external disturbance in the model, which are not necessary to satisfy the so-called matched condition. A robust sliding surface is designed, and then an adaptive sliding mode controller is designed based on the tracking error model. The proposed controller can drive the error dynamics onto the predefined sliding surface in a finite time, and guarantees the property of asymptotical stability without the information of upper bound of uncertainties as well as perturbations. Finally, simulations are given to show the effectiveness of the proposed control methods.  相似文献   

8.
This paper considers the control problem of spacecraft line-of-sight (LOS) relative motion with thrust saturation in the presence of unmodeled dynamics, external disturbance and unknown mass property. By using skew-symmetric property, reference trajectory generator and anti-windup technique, a novel passivity-based adaptive sliding mode control (SMC) scheme is proposed without prior knowledge of uncertainty/disturbance bound. Within the Lyapunov framework, the establishment of a real sliding mode (which induces the practical stability of closed-loop error system) is validated. The main contributions are that a new control gain adaptive algorithm is adopted to attenuate the overestimation of switching gain and a differentiable projection-based parameter adaptive algorithm is proposed to force the mass approximator to remain in a desired domain, then the adaptive control law is modified by the reference trajectory generator and anti-windup technique to compensate for the effect of thrust saturation. Finally, simulations are conducted to show the fine performance of proposed control scheme.  相似文献   

9.
This study presents a new framework for merging the Adaptive Fuzzy Sliding-Mode Control (AFSMC) with an off-policy Reinforcement Learning (RL) algorithm to control nonlinear under-actuated agents. In particular, a near-optimal leader-follower consensus is considered, and a new method is proposed using the framework of graphical games. In the proposed technique, the sliding variables’ coefficients are considered adaptively tuned policies to achieve an optimal compromise between the satisfactory tracking performance and the allowable control efforts. Contrary to the conventional off-policy RL algorithms for consensus control of multi-agent systems, the proposed method does not require partial knowledge of the system dynamics to initialize the RL process. Furthermore, an actor-critic fuzzy methodology is employed to approximate optimal policies using the measured input/output data. Therefore, using the tuned sliding vector, the control input for each agent is generated which includes a fuzzy term, a robust term, and a saturation compensating term. In particular, the fuzzy system approximates a nonlinear function, and the robust part of the input compensates for any possible mismatches. Furthermore, the saturation compensating gain prevents instability due to any possible actuator saturation. Based on the local sliding variables, the fuzzy singletons, the bounds of the approximation errors, and the compensating gains are adaptively tuned. Closed-loop asymptotic stability is proved using the second Lyapunov theorem and Barbalat's lemma. The method's efficacy is verified by consensus control of multiple REMUS AUVs in the vertical plane.  相似文献   

10.
The problem of a grouped multiple missiles cooperative attack on multiple high maneuvering targets with a limited driving force is achieved by an anti-saturation fixed-time grouped cooperative guidance (FxTCG) law based on a sliding mode fixed-time disturbance observer (SM-FxTDO) in this study. First, the state estimation of each high maneuvering target within a fixed time is achieved by designing a sliding mode fixed-time disturbance observer. Second, the group cooperative guidance law is designed by using fixed-time theory, which can ensure the group consensus of multiple missiles strike times within a fixed time under the condition of input saturation. Then, the fixed time stability of the multi-missiles system is proven by using the bi-limit homogeneous theory and the Lyapunov function. Finally, the simulation results show the superiority of the designed observer and cooperative guidance law. The proposed observer can more effectively and accurately estimate the state of the high maneuvering target than the ESO. The proposed cooperative guidance law expands the number of attack targets and makes each group of multiple missiles attack the corresponding high maneuvering target under the conditions of an input saturation within a fixed time compared to the single-target cooperative law.  相似文献   

11.
In this paper, the tracking control problem of uncertain Euler–Lagrange systems under control input saturation is studied. To handle system uncertainties, a leakage-type (LT) adaptive law is introduced to update the control gains to approach the disturbance variations without knowing the uncertainty upper bound a priori. In addition, an auxiliary dynamics is designed to deal with the saturation nonlinearity by introducing the auxiliary variables in the controller design. Lyapunov analysis verifies that based on the proposed method, the tracking error will be asymptotically bounded by a neighborhood around the origin. To demonstrate the proposed method, simulations are finally carried out on a two-link robot manipulator. Simulation results show that in the presence of actuator saturation, the proposed method induces less chattering signal in the control input compared to conventional sliding mode controllers.  相似文献   

12.
Synchronization of two identical chaotic systems with matched and mismatched perturbations by utilizing adaptive sliding mode control (ASMC) technique is presented in this paper. The sliding surface function is specially designed based on the Lyapunov stability theorem and linear matrix inequality (LMI) optimization technique. The designed tracking controller can not only suppress the mismatched perturbations when the controlled dynamics (master–slave) are in the sliding mode, but also drive the trajectories of synchronization errors into a small bounded region whose size can be adjusted through the designed parameters. Adaptive mechanisms are employed in the proposed control scheme for adapting the unknown upper bounds of the perturbations, and the stability of overall controlled synchronization systems is guaranteed. The comparison of the proposed chaotic synchronization technique with an existing generalized chaotic synchronization (GCS) method as well as application of the proposed control method to secure communications is also demonstrated in this paper.  相似文献   

13.
The design of an adaptive sliding mode control (SMC) scheme is proposed in this paper for stabilizing a class of dynamic systems with matched and mismatched perturbations. Two methods for designing a novel sliding surface function are introduced first. By utilizing a pseudocontrol input in the sliding surface function, one cannot only suppress the mismatched perturbations in the sliding mode, but also obtain the property of asymptotical stability. Then a sliding mode controller is designed to drive the controlled systems to the designated sliding surface in a finite time. Adaptive mechanism is also embedded in the controller as well as in the sliding surface function designed from the second method to overcome the perturbations, so that the informations of upper bound of perturbations are not required. An application of flight control and experimental results of controlling a servomotor are also given for demonstrating the applicability of the proposed control scheme.  相似文献   

14.
This paper studies the control of a medium-voltage DC (MVDC) traction power supply system for rail transit (RT). In order to optimize the ability of DC voltage fluctuation and frequency regulation of rail trains, a fuzzy adaptive cooperative secondary control strategy based on improved virtual synchronous machine (VSM) is proposed. Firstly, the improved VSM control strategy is adopted in the traction substations (TSSs), which makes the RT trains have the external characteristics of synchronous generator and have certain inertia and damping support capacity, so as to improve the ability of the RT traction system to cope with traction network transient changes. Secondly, the virtual inertia and virtual damping can be dynamically adjusted by the system frequency deviating from the nominal steady-state frequency, and the dynamic fuzzy adjustment can be carried out by the fuzzy logic system to slow down the frequency fluctuation. Then, due to the different power supply distances and parameter settings between multiple TSSs, cooperative control is used to coordinate local TSS perceptions of information between adjacent TSS to achieve consistency of frequency response of multiple TSSs under different parameters. Besides, a time-varying switching topology handoff method is considered to select the optimal communication topology between adjacent base stations. Finally, simulation results verify the effectiveness of the proposed control strategy.  相似文献   

15.
This paper studies the cooperative fault-tolerant formation control problem of tracking a dynamic leader for heterogeneous multiagent systems consisting of multipile unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) with actuator faults under switching directed interaction topologies. Based on local neighborhood formation information, the distributed fault-tolerant formation controllers are constructed to ensure that all follower UAVs and UGVs can accomplish the demanding formation configuration in the state space and track the dynamic leader’s trajectory. By incorporating the sliding mode control and adaptive control technique, the actuator faults and unknown parameters of follower agents can be compensated. Through the theoretical analysis, it is proved that the cooperatively semiglobally uniformly ultimately boundedness of the closed-loop system is guaranteed, and the formation tracking errors converge to a small adjustable neighborhood of the origin. A simulation example is introduced to show the validity of the proposed distributed fault-tolerant formation control algorithm.  相似文献   

16.
This paper deals with the sliding mode control problem for semi-Markovian jump systems with state saturation, in which the controller may not be synchronized with the considered systems. A mode-detector is introduced to estimate the unavailable system mode, based on which an asynchronous sliding mode controller is designed. Then, both the μ-exponential mean-square stability and the reachability of sliding surface are analyzed. Furthermore, a solving algorithm is given to acquire the feasible controller gains. Finally, the proposed asynchronous sliding mode control approach under state-saturation is illustrated via simulation results.  相似文献   

17.
In this paper, the consensus control problem of Takagi-Sugeno (T-S) fuzzy multiagent systems (MASs) is investigated by using an observer based distributed adaptive sliding mode control. A distributed nonfragile observer is put forward to estimate the unmeasured state of agents. Based on such an observer, a novel distributed integral sliding surface is designed to suppress the disturbance and uncertainty of T-S fuzzy MASs. In order to achieve the consensus objective, a nominal distributed protocol and an adaptive sliding mode controller are separately designed. Futhermore, the nominal distributed protocol solves the consensus control problem of T-S fuzzy MASs in the absence of disturbance and uncertainty by using the information of adjacent agents obtained by the observer, while the adaptive sliding mode controller suppresses the disturbance and uncertainty. Finally, the proposed method is applied to two examples. Example 1 verifies the superiority of the method by comparing with the fuzzy-based dynamic sliding mode controller. Example 2 is used to illustrate that our control scheme can effectively solve the consensus control problem of T-S fuzzy MASs.  相似文献   

18.
This paper addresses the problem of robust integrated fault estimation (FE) and fault-tolerant control (FTC) for a class of discrete-time networked Takagi–Sugeno (T–S) fuzzy systems with two-channel event-triggered schemes, input quantization and incomplete measurements. The incomplete information under consideration includes randomly occurring sensor saturation and randomly occurring quantization. In order to save the limited networked resources, this paper firstly proposed a novel dynamic event-triggered scheme on the sensor side and a static one on the controller side. Secondly, an event-triggered FE observer for the T–S fuzzy model is designed to estimate actuator faults and system states, simultaneously. Then, a specified discrete sliding surface in the state-estimation space is constructed. By using time-delay analysis technique and considering the effects of event-triggered scheme, quantization, networked conditions, actuator fault and external disturbance, the sliding mode dynamics and error dynamics are unified into a new networked time-delay model. Based on this model, sufficient conditions are established such that the resulting augmented fuzzy system is stochastically stable with a prescribed H performance level with a single-step linear matrix inequality (LMI) formulation. Furthermore, an observer-based sliding mode controller for reaching motion is synthesized to guarantee the reachability of the sliding surface. Finally, a single-link flexible manipulator example is present to illustrate the effectiveness of the proposed method.  相似文献   

19.
In this paper, an asynchronous sliding mode control design method based on the event-triggered strategy is proposed for the continuous stirred tank reactor (CSTR) under external disturbance. Firstly, with the purpose of appropriately modeling the multi-mode switching phenomenon in the CSTR caused by the fluctuation of temperature and concentration, the Markov process is applied. Secondly, the asynchronous switching characteristics are introduced to describe mismatch between the controller and the system, which caused by some factors such as signal transmission delay and packet dropout. In order to effectively estimate the system states that cannot be measured in real time, an observer based on the event-triggered strategy is proposed, which also can reduce the computational cost. In addition, a sliding mode controller is designed to ensure the dynamic stability and the sliding dynamics is reachable in a finite time. Finally, the effectiveness of the proposed method is verified by simulation experiments.  相似文献   

20.
This paper considers the finite-time bipartite consensus problem governed by linear multiagent systems subject to input saturation under directed interaction topology. Due to the existence of input saturation, the dynamic performance of linear multiagent systems degrades significantly. For the improvement of the dynamic performance of systems, a dynamic gain scheduling control approach is proposed to design a dynamic Laplacian-like feedback controller, which can be obtained from the analytical solution of a parametric Lyapunov equation. Suppose that each agent is asymptotically null controllable with bounded control, and that the corresponding interaction topology of the signed directed graph with a spanning tree is structurally balanced. Then the dynamic Laplacian-like feedback control can ensure that linear multiagent systems will achieve the finite time bipartite consensus. The dynamic gain scheduling control can better improve the bipartite consensus performance of the linear multiagent systems than the static gain scheduling control. Finally, two examples are provided to show the effectiveness of the proposed control design method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号