首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
This paper is concerned with the stability analysis of time-varying delay systems. Unlike the construction of augmented Lyapunov functional and multiple integral Lyapunov functional, novel three Lyapunov functionals are suggested which are delay product type functions and lead to less conservative results. Based on newly developed Lyapunov functionals, three stability criteria are derived and their superiority is described by three numerical examples.  相似文献   

2.
This paper presents novel approaches for stability analysis of switched linear time-delay stochastic systems under dwell time constraint. Instead of using comparison principle, piecewise switching-time-dependent discretized Lyapunov functions/functionals are introduced to analyze the stability of switched stochastic systems with constant or time-varying delays. These Lyapunov functions/functionals are decreasing during the dwell time and non-increasing at switching instants, which lead to two mode-dependent dwell-time-based delay-independent stability criteria for the switched systems without restricting the stability of the subsystems. Comparison and numerical examples are provided to show the efficiency of the proposed results.  相似文献   

3.
This paper addresses the delay-dependent stability problem of linear systems with interval time-varying delays. A generalized free-matrix-based inequality is proposed and employed to derive stability conditions, which are less conservative than the Bessel–Legendre inequality. An augmented Lyapunov–Krasovskii functional is tailored for the generalized free-matrix-based inequality. Then, some items in the Lyapunov–Krasovskii functionals are integrated so as to relax its positive definite condition, which provides a more accurate lower bound for the Lyapunov–Krasovskii functionals. Therefore, some less conservative stability criteria are presented. Two numerical examples illustrate the effectiveness of the method.  相似文献   

4.
This paper investigates the problem for stability of neutral-type dynamical neural networks involving delay parameters. Different form the previously reported results, the states of the neurons involve multiple delays and time derivative of states of neurons include discrete time delays. The stability of such neural systems has not been given much attention in the past literature due to the difficulty of finding Lyapunov functionals which are suitable for stability analysis of this type of neural networks. This paper constructs a generalized Lyapunov functional by introducing new terms into the well-known Lyapunov functional that enables us to conduct a theoretical investigation into stability analysis of delayed neutral-type neural systems. Based on this modified novel Lyapunov functional, sufficient criteria are derived, which guarantee the existence, uniqueness and global asymptotic stability of the equilibrium point of the neutral-type neural networks with multiple delays in the states and discrete delays in the time derivative of the states. The applicability of the proposed stability conditions rely on testing two basic matrix properties. The constraints impose on the system matrices are determined by using nonsingular M-matrix condition, and the constraints imposed on the coefficients of the time derivative of the delayed state variables are derived by exploiting the vector-matrix norms. We also note that the obtained stability conditions have no involvement with the delay parameters and expressed in terms of nonlinear Lipschitz activation functions. We present a constructive numerical example for this class of neural networks to give a systematic procedure for determining the imposed conditions on the whole system parameters of the delayed neutral-type neural systems.  相似文献   

5.
This paper is concerned with the stability of sampled-data systems with constant delay. Firstly, by dividing the interval of sampling periods in two subintervals, two separate looped functionals are employed in each of these subintervals. Then, a new Lyapunov functional that combines classical Lyapunov functionals and looped-functionals is constructed. Furthermore, several zero equalities which consider the intrinsic relationships of state vectors in the system are introduced into the derivative of the constructed functional, and some stability criteria with less conservatism are obtained in forms of linear matrix inequalities (LMIs). Finally, two numerical examples are carried out as to verify the effectiveness and advantages of our method.  相似文献   

6.
This paper studies the stability analysis of linear systems with time-varying delay, which is supposed to be the trigonometric form. By utilizing the characteristics between time-varying delay and its derivative, a novel interval approximation method is proposed, which provides the new allowable delay sets. Then making use of Wirtinger inequality, reciprocally convex inequality and the looped Lyapunov–Krasovskii functionals, the stability criteria with less conservatism are obtained. Finally, two examples are used to show the effectiveness and efficiency of the stability criteria.  相似文献   

7.
This paper focuses on the stability analysis of systems with interval time-varying delay. A new augmented vector containing single and double integral terms is constructed and the corresponding Lyapunov functional with triple integral terms is introduced. In order to improve the estimating accuracy of the derivatives of the constructed Lyapunov functional, single integral inequalities and double integral inequalities via auxiliary functions are employed on the first step, then an extended relaxed integral inequality and reciprocally convex approach are further utilized to narrow the scaling room of the functional derivatives. As a result, some novel delay-dependent stability criteria with less conservatism are derived. Finally, numerical examples are provided to check the effectiveness of the theoretical results and the improvement of the proposed method over the existing works.  相似文献   

8.
This paper aims at establishing necessary and sufficient conditions of exponential stability for linear discrete-time systems with multiple delays. Firstly, we introduce a new concept—Lyapunov matrix, and investigate its properties, existence and uniqueness by: (i) characterizing the solution of a boundary value problem of matrix difference equations; and (ii) constructing complete type Lyapunov–Krasovskii functionals with pre-specified forward difference. Secondly, a new constructive analysis methodology, named Lyapunov matrix approach, is proposed to establish necessary and sufficient exponential stability conditions for discrete-time systems with multiple delays. Finally, two numerical examples are presented to illustrate the effectiveness of the theoretical results. It is worth emphasizing that, from a view of computation, the Lyapunov matrix approach proposed here is concerned with three key steps: (i) solve a systems of linear equations; (ii) check whether a constant matrix is of full-column-rank, and (iii) judge whether a constant matrix is positive definite. All of these can be easily realized by using the tool software—MATLAB.  相似文献   

9.
This work deals with the problem of absolute stability analysis for a class of uncertain Lur’e systems with time-varying delays. Novel delay-partitioning approaches are presented, which are dividing the variation interval of the delay into three subintervals. Some new augment Lyapunov–Krasovskii functionals (LKFs) are defined on each of the obtained subintervals which can efficiently make use of the information of the delay and relate to the reciprocally convex combination technique and the Wirtinger-based integral inequality method. Several improved delay-dependent criteria are derived in terms of the linear matrix inequalities (LMIs). The merit of the proposed criteria lies in their less conservativeness and lower numerical complexity than relative literature. Two numerical examples are included to illustrate the effectiveness and the improvement of the proposed method.  相似文献   

10.
This paper considers a stability analysis problem for continuous-time Markovian jump linear systems under aperiodic samplings which are represented as Markovian jump linear systems with input delay. For the systems, this paper constructs a Lyapunov functional by utilizing a fragmented-delay state, which is defined between the last sampling instant and the present time, and a new state space model of the fragmented state. Based on the Lyapunov functional, a stability criterion is derived in terms of linear matrix inequalities by using reciprocally convex approach and integral inequality. Here, the reciprocally convex approach and integral inequality are associated not only with the current state, the delayed state, and the maximum-admissible delay state, but also with the fragmented-delay state. The simulation result shows the effectiveness of the proposed stability criterion.  相似文献   

11.
In this paper, we design observer-based feedback control for a class of linear systems. The novelty of the paper comes from the consideration of an augmented weighted based integral inequality involving quadratic functions with an exponential term which is less conservative than the celebrated weighted integral inequality employed in the context of time-delay systems. By using appropriately chosen Lyapunov–Krasovskii functional (LKF), together with the derived integral inequality, a new sufficient condition for exponential stability in terms of linear matrix inequalities (LMIs) is proposed for the delayed linear systems with state feedback control. Finally, the applicability and superiority of the proposed theoretical results over the existing ones are analyzed in virtue of numerical examples.  相似文献   

12.
This paper deals with the problem of delay-dependent stability analysis for neural networks with time-varying delays. First, by constructing an augmented Lyapunov–Krasovskii functional and utilizing a generalized free-weighting matrix integral inequality, an improved stability criterion for the concerned network is derived in terms of linear matrix inequalities. Second, by considering a marginal augmented vector and modifying a Lyapunov–Krasovsii functional, a further enhanced stability criterion is presented. Third, a less conservative stability condition in which a relaxed inequality related to activation functions is added is introduced. Finally, three numerical examples are included to illustrate the advantage and validity of the proposed criteria.  相似文献   

13.
基于参数相关Lyapunov泛函不确定时滞系统的鲁棒稳定性   总被引:3,自引:0,他引:3  
研究了含多面体不确定性的时滞系统的鲁棒稳定性问题。利用参数相关的Lyapunov泛函,得到了基于LMI的时滞系统时滞相关的鲁棒稳定的充分条件。在该条件中不确定系统在多面体不同的顶点用不同的Lyapunov阵判断其稳定性,而已有的结果为在所有的顶点用一个共同Lyapunov阵分析。进一步,将确定系统稳定的最大时滞问题转化为求广义特征值的拟凸优化问题。最后数值例子说明了该方法有较小的保守性  相似文献   

14.
In this paper, the problem of stability analysis for linear systems with time-varying delays is considered. By the consideration of new augmented Lyapunov functionals, improved delay-dependent stability criteria for asymptotic stability of the system are proposed for two cases of conditions on time-varying delays with the framework of linear matrix inequalities (LMIs), which can be solved easily by various efficient convex optimization algorithms. The enhancement of the feasible region of the proposed criteria is shown via three numerical examples by the comparison of maximum delay bounds.  相似文献   

15.
宁海成 《科技通报》2012,28(4):25-27
通过构造V函数法及细致的分析得到系统的一致持续性,在种群一致持续性前提下,利用Brouwer不动点定理证明系统至少存在一个正周期解,并通过构造Lyapunov泛函和运用微分不等式,稳定性理论及Barbalat’s引理得到了判定正周期解的全局渐近稳定性和全局吸引的充分条件。  相似文献   

16.
In this paper, the problem of mean-square integral input-to-state stability of nonlinear impulsive semi-Markov jump delay systems is investigated. By using stochastic Lyapunov functions together with Razumikhin technique, some sufficient conditions for mean-square integral input-to-state stability for a class of nonlinear impulsive semi-Markov jump delay systems are developed. In particular, the results obtained generalize and complement some recent literature. Finally, some numerical examples are given to show the effectiveness and advantages of the proposed techniques.  相似文献   

17.
In this paper, a new memory-based control problem is addressed for neutral systems with time-varying delay, input saturations and energy bounded disturbances. Attention is focused on the design of a memory-based state feedback controller such that the closed-loop system achieves the desirable performance indices including the boundedness of the state trajectories, the H disturbance rejection/attenuation level as well as the asymptotic stability. By using the combination of a novel delay-dependent polytopic approach, augmented Lyapunov–Krasovskii functionals and some integral inequalities, delay-dependent sufficient conditions are first proposed in terms of linear matrix inequalities. Then, three convex optimization problems are formulated whose aims are to, respectively, maximize the disturbance tolerance level, minimize the disturbance attenuation level and maximize the initial condition set. Finally, simulation examples demonstrate the effectiveness and benefits of the obtained results.  相似文献   

18.
In this paper, the problem of delay-dependent stability analysis of fractional-order systems with time-varying delay is investigated. First, a class of novel fractional-order integral inequalities for quadratic functions by constructing appropriate auxiliary functions is proposed, which has been proven to be useful in analyzing fractional-order systems with time-varying delay. Based on these proposed inequalities, the Lyapunov–Krasovskii functions are designed to deal with the time-varying delay terms, reducing the conservatism of the stability criteria. Furthermore, delay-dependent criteria are derived to achieve asymptotic stability of fractional-order systems with time-varying delay. Finally, two examples are provided to illustrate the effectiveness and feasibility of the proposed stability criteria.  相似文献   

19.
This paper proposes an adaptive observer-based neural controller for a class of uncertain large-scale stochastic nonlinear systems with actuator delay and time-delay nonlinear interactions, where drift and diffusion terms contain all state variables of their own subsystem. First, a state observer is established for estimating the unmeasured states, and a predictor-like term is utilized to transform the input delayed system into the delay-free system. Second, novel appropriate Lyapunov–Krasovskii functionals are used to compensate the time-delay terms, and neural networks are employed to approximate unknown nonlinear functions. At last, an output-feedback adaptive neural control scheme is constructed by using Lyapunov stability theory and backstepping technique. It is shown that the designed neural controller can ensure that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB) and the tracking error is driven to a small neighborhood of the origin. The simulation results are presented to further show the effectiveness of the proposed approach.  相似文献   

20.
A common approach to Lyapunov's stability control is to design a controller such that a Lyapunov function can be derived for the control system to ensure stability. This procedure often leads to a discontinuous controller. When the controller is implemented, the discontinuous terms are replaced with continuous functions to avoid chattering of the control signal. Two associated problems have been overlooked during this procedure. One is that discontinuous control systems are non-smooth, which violates the fundamental assumptions of solution theories and the applicability of Lyapunov's stability theory is questionable. Another problem is that the replacement of discontinuous terms may weaken stability, which can be critical. In this paper, we discuss proper stability analysis of discontinuous control systems using the extended Lyapunov's second method based on Filippov's solution concept for non-smooth systems. We further propose to utilize the concept of Lyapunov exponents to quantitatively analyze the stability of continuous control systems obtained by replacing the discontinuous terms in the discontinuous controllers. An example involving the stabilization of a two-link non-fixed-base robotic manipulator is presented for demonstration. This research fills the gap in designing continuous Lyapunov's stability controllers regarding limited available Lyapunov functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号