首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The interaction between footwear and surfaces influences the forces experienced by tennis players. The purpose of this study was to investigate traction demand and kinematic adaptation during tennis-specific movements with changes in traction characteristics of surfaces. We hypothesised that players would increase the utilised coefficient of friction (horizontal to vertical ground reaction force ratio) when the shoe surface combination had a high coefficient of friction and flex their knee after contact to facilitate braking. Eight participants performed two separate movements, side jump out of stance and running forehand. Ground reaction force was measured and three-dimensional kinematic data were recorded. Clay surface and cushioned acrylic hard court (low vs. high shoe–surface friction) were used. The peak utilised coefficient of friction was greater on clay than the hard court. The knee was less flexed at impact on clay ( ? 5.6 ± 10.2°) and at peak flexion ( ? 13.1 ± 12.0°) during the running forehand. Our results indicate that tennis players adapt the level of utilised friction according to the characteristics of the surface, and this adaptation favours sliding on the low friction surface. Less knee flexion facilitates sliding on clay, whereas greater knee flexion contributes to braking on the hard court.  相似文献   

2.
Abstract

The relationship between junior boys' tennis success, as measured by a top 20 International Tennis Federation's Junior Circuit (ITFJC) ranking, and subsequent ranking accomplishments in professional men's tennis is discussed. The names, countries, and birthdates of all players to achieve a top 20 ITFJC boys' year-end ranking from 1992 to 1998 were recorded. The progress of these players through the professional ranks was then tracked to the end of 2004. Results indicate that 91% of top 20-ranked boys achieved a professional men's ranking, while a stepwise regression analysis revealed junior ranking (JR) to be a predictor of future, professional ranking (β = 0.232, r 2 = 0.054, p < 0.05). A regression equation [predicted professional rank = 78.17 + 6.31?(JR)] accounted for a significant amount of variance in professional ranking. For male players, therefore, the achievement of a top 20 junior ranking appears to be a reasonable yardstick for future, professional success. The type of surface upon which junior players develop their games was also shown to influence professional ranking highs, with play on clay courts or a combination of clay and hard courts helping to produce higher, professionally ranked players than hard court play alone (p≤ 0.01).  相似文献   

3.
Many sports associated with anterior cruciate ligament (ACL) injury require athletes attend to a ball during participation. We investigated effects of attending to a ball on lower extremity mechanics during a side-cut maneuver and if these effects are consistent for males and females. Sagittal and frontal plane hip and knee kinematics and joint moments were measured during side-cut maneuvers in 19 male and 19 female National Collegiate Athletic Association division III basketball players. Participants also experienced two side-cut conditions that required attention to a ball. Our results did not indicate that the effect of attention varies with gender. However, during side-cut conditions while attending to a ball, internal knee adductor moment was 20% greater (p = 0.03) and peak knee flexion angle was 4° larger (p < 0.01). Females demonstrated 5° less hip flexion (p = 0.046), 12° less knee flexion (p < 0.01), and 4° more knee abduction (p = 0.026) at initial contact during all side-cut conditions than males. Attention to a ball may affect lower extremity mechanics relevant to ACL injury. The validity of laboratory studies of lower extremity mechanics for sports that include attention to a ball may be increased if participants are required to attend to a ball during the task.  相似文献   

4.
Abstract

The objective of this study was to compare the three-dimensional lower extremity running kinematics of young adult runners and elderly runners. Seventeen elderly adults (age 67–73 years) and 17 young adults (age 26–36 years) ran at 3.1 m · s?1 on a treadmill while the movements of the lower extremity during the stance phase were recorded at 120 Hz using three-dimensional video. The three-dimensional kinematics of the lower limb segments and of the ankle and knee joints were determined, and selected variables were calculated to describe the movement. Our results suggest that elderly runners have a different movement pattern of the lower extremity from that of young adults during the stance phase of running. Compared with the young adults, the elderly runners had a substantial decrease in stride length (1.97 vs. 2.23 m; P = 0.01), an increase in stride frequency (1.58 vs. 1.37 Hz; P = 0.002), less knee flexion/extension range of motion (26 vs. 33°; P = 0.002), less tibial internal/external rotation range of motion (9 vs. 12°; P < 0.001), larger external rotation angle of the foot segment (toe-out angle) at the heel strike (?5.8 vs. ?1.0°; P = 0.009), and greater asynchronies between the ankle and knee movements during running. These results may help to explain why elderly individuals could be more susceptible to running-related injuries.  相似文献   

5.
This study presents the kinematics and plantar pressure characteristics of eight elite national-level badminton athletes and eight recreational college-level badminton players while performing a right-forward lunge movement in a laboratory-simulated badminton court. The hypothesis was that recreational players would be significantly different from elite players in kinematics and plantar pressure measures. Vicon® motion capture and Novel® insole plantar pressure measurement were simultaneously taken to record the lower extremity kinematics and foot loading during stance. Recreational players showed significantly higher peak pressure in the lateral forefoot (P = 0.002) and force time integral in the lateral forefoot (P = 0.013) and other toes (P = 0.005). Elite athletes showed higher peak pressure in the medial forefoot (P = 0.003), hallux (P = 0.037) and force time integral in the medial forefoot (P = 0.009). The difference in landing techniques for the lunge step between elite athletes and recreational players was observed with peak ankle eversion (?38.2°±2.4° for athletes and ?11.1°±3.9° for players, P = 0.015); smaller knee range of motion in the coronal and transverse planes, with differences in peak knee adduction (28.9°±6.8° for athletes and 15.7°±6.2° for players, P = 0.031); peak knee internal rotation (20.3°±1.3° for athletes and 11.8°±3.2° for players, P = 0.029) and peak hip flexion (77.3°±4.1° for athletes and 91.3°±9.3° for players, P = 0.037).  相似文献   

6.
ABSTRACT

The aim of this study was to assess the influence of different bike positions on the perception of fatigue, pain and comfort. Twenty cyclists underwent three tests that involved cycling for 45 min at their individual 50% peak aerobic power output while adopting different positions on the bike. Participants performed the cycling tests adopting three positions defined by two parameters (knee flexion angle [20°, 30°, 40°] and trunk flexion angle [35°, 45°, 55°]) in random order. Angles were measured using a 2D motion analysis system during cycling and applying Fonda’s correction factor. Perceptions of comfort, fatigue and pain were reported before the end of each test. The combination of 40° knee flexion and 35° trunk flexion was perceived as the most uncomfortable position. Moreover, greater knee flexion had a negative effect on trunk comfort, accompanied by greater levels of fatigue and pain perception in the anterior part of the thigh and knee. In conclusion, cyclists perceived the most comfortable position to be when the saddle height was within the recommended knee angle (30° calculated from the offset position or 40 ± 4.0° of absolute value). Upright trunk was found to be the most comfortable position for recreational cyclists, where aerodynamics is not so important. Cyclists’ bike perceptions should be taken into account when it comes to choosing the most beneficial position, since this can play a role in injury prevention and enhance cycling performance.  相似文献   

7.
In this study, we examined the relationship between upper limb joint movements and horizontal racket head velocity to clarify joint movements for developing racket head speed during tennis serving. Sixty-six male tennis players were videotaped at 200 Hz using two high-speed video cameras while hitting high-speed serves. The contributions of each joint rotation to horizontal racket velocity were calculated using vector cross-products between the angular velocity vectors of each joint movement and relative position vectors from each joint to the racket head. Major contributors to horizontal racket head velocity at ball impact were shoulder internal rotation (41.1%) and wrist palmar flexion (31.7%). The contribution of internal rotation showed a significant positive correlation with horizontal racket head velocity at impact (r = 0.490, P < 0.001), while the contribution of palmar flexion showed a significant negative correlation (r = ? 0.431, P < 0.001). The joint movement producing the difference in horizontal racket head velocity between fast and slow servers was shoulder internal rotation, and angular velocity of shoulder internal rotation must be developed to produce a high racket speed.  相似文献   

8.
Tennis courts are normally classified as fast or slow depending on whether the coefficient of sliding friction (COF) between the ball and the surface is respectively small or large. This classification is based on the fact that the change in horizontal ball speed is directly proportional to the COF if the ball is incident at a small angle to the horizontal. At angles of incidence greater than about 16° it is commonly assumed that the ball will roll during the bounce, in which case one can show that the ratio of the horizontal speed after the bounce to that before the bounce will be 0.645 regardless of the angle of incidence or the speed of the court. Measurements are presented showing that (a) at high angles of incidence, tennis balls grip or ‘bite’ the court but they do not roll during the bounce, (b) the bounce:speed ratio can be as low as 0.4 on some courts and (c) the normal reaction force acts through a point ahead of the centre of mass. An interesting consequence is that, if court A is faster than court B at low angles of incidence, then A is not necessarily faster than B at high angles of incidence. An exception is a clay court which remains slow at all angles of incidence. The measurements also show that the coefficient of restitution for a tennis ball can be as high as 0.9 for an oblique bounce on a slow court, meaning that the ball bounces like a superball in the vertical direction and that slow courts are fast in the vertical direction.  相似文献   

9.
Abstract

It is currently not known whether human responses across typical sports surfaces are dependent on cushioning or frictional properties of the interface. The present study assessed systematic changes in surface cushioning (baseline acrylic, rubber, thin foam, and thick foam) as participants performed tennis running forehand foot plants wearing a basic neutral shoe (plimsolls). It was hypothesized that systematic decreases in peak rates of loading, heel pressures, and perceived hardness would be yielded as surface cushioning increased (impact test device). A common acrylic top surface provided consistent frictional properties across surfaces. Kinetics (AMTI, 960 Hz and Footscan Pressure Insoles, 500 Hz), kinematics (Peak MOTUS, 120 Hz), and cushioning perception were assessed. Peak and mean loading rates of vertical ground reaction force, peak horizontal force, peak heel pressure, and rates of loading demonstrated significant correlations (P < 0.05) with the participants' perceived levels of cushioning and matched mechanical rankings of surface cushioning. In contrast, peak impact force was lowest on the least cushioned surface. Kinematic responses were not significantly different between surfaces. Present evidence supports ‘‘peak rate of loading'' as a more suitable indicator of surface cushioning than peak impact force. Although cautionary, biomechanical support is also provided for mechanical methods of surface cushioning assessment.  相似文献   

10.
It is commonly believed that a torn ACL or a damaged meniscus may be associated with altered knee joint movements. The purpose of this study was to measure the tibiofemoral kinematics of ACL deficiency with concomitant meniscus deficiency. Unilateral knees of 28 ACL deficient participants were studied while ascending stairs. Among these patients, 6 had isolated ACL injuries (group I), 8 had combined ACL and medial meniscus injuries (group II), 8 had combined ACL and lateral meniscus injuries (group III) and 6 had combined ACL and medial-lateral meniscus injuries (group IV). Both knees were then scanned during a stair climb activity using single fluoroscopic image system. Knee kinematics were measured at 0°, 5°, 10°, 15°, 30° and 60° of flexion during ascending stairs. At 0°, 15° and 30° flexion of the knee, the tibia rotated externally by 13.9 ± 6.1°,13.8 ± 9.5° and 15.9 ± 9.8° in Group I. Group II and III exhibited decreased external rotation from 60° to full extension. Statistical differences were found in 0°, 15°and 30° of flexion for the 2 groups compared with Group I. In general, the tibia showed anterior translation with respect to the femur during ascending stairs. It was further determined that Group III had larger anterior translation compared with Group IV at 0° and 5° of flexion (?6.9 ± 1.7 mm vs. 6.2 ± 11.3 mm, P = 0.041; ?9.0 ± 1.8 mm vs. 8.1 ± 13.4 mm, P = 0.044). During ascending stairs the ACL deficient knee with different deficiencies in the meniscus will show significantly different kinematics compared with that of uninjured contralateral knee. Considering the varying effect of meniscus injuries on knee joint kinematics, future studies should concentrate on specific treatment of patients with combined ACL and meniscus injuries to protect the joint from abnormal kinematics and subsequent postoperative degeneration.  相似文献   

11.
ABSTRACT

Anterior cruciate ligament (ACL) injuries in badminton commonly occur during single-leg landing after an overhead stroke in the backhand-side court. This study compared differences in trunk acceleration and kinematic variables during single-leg landing in the forehand- and backhand-side courts after an overhead stroke. Eighteen female junior badminton players performed two singles games while wearing a tri-axial accelerometer. The moment that over 4g of resultant acceleration was generated was determined using synchronised video cameras. Trunk lateral inclination and hip abduction angles at the point of landing with over 4g of resultant acceleration were analysed. Mediolateral acceleration in the backhand-side court was greater than that in the opposite-side court (< 0.001, ES = 0.840). Both trunk lateral angles were larger than those previously reported in injured participants and the hip abduction angle in the backhand-side court was larger than that in the forehand-side court (< 0.001, ES = 2.357). The lateral and vertical acceleration in the backhand-side court showed moderate-to-strong correlations with the trunk and hip angles. The mediolateral physical demand and high-risk posture in the backhand-side court may be associated with a higher incidence of knee injuries during badminton games.  相似文献   

12.
The treadmill is an attractive device for the investigation of human locomotion, yet the extent to which lower limb kinematics differ from overground running remains a controversial topic. This study aimed to provide an extensive three-dimensional kinematic comparison of the lower extremities during overground and treadmill running. Twelve participants ran at 4.0 m/s ( ± 5%) in both treadmill and overground conditions. Angular kinematic parameters of the lower extremities during the stance phase were collected at 250 Hz using an eight-camera motion analysis system. Hip, knee, and ankle joint kinematics were quantified in the sagittal, coronal, and transverse planes, and contrasted using paired t-tests. Of the analysed parameters hip flexion at footstrike and ankle excursion to peak angle were found to be significantly reduced during treadmill running by 12° (p = 0.001) and 6.6° (p = 0.010), respectively. Treadmill running was found to be associated with significantly greater peak ankle eversion (by 6.3°, p = 0.006). It was concluded that the mechanics of treadmill running cannot be generalized to overground running.  相似文献   

13.
Landing with a low knee flexion angle after volleyball block jumps may be associated with an increased risk of anterior cruciate ligament (ACL) injury. The aim of the present study was to identify the types of volleyball landings after blocks where the knee flexion angle is found to be under a critical knee flexion angle value of 30° at the instant of the first peak of the ground reaction force (GRF). Synchronized kinematic and kinetic data were collected for each trial. T-tests were used to determine if each knee flexion angle at the instant of the peak GRF was significantly different from the critical value of 30°. A repeated measures ANOVA was used to compare knee flexion angle, time to first peak and the magnitude of the first peak of the resultant GRF and knee stiffness. Significantly lower knee flexion angles were found in the “go” landing (p?=?.01, ES?=?0.6) and the “reverse” landing (p?=?.02, ES?=?0.6) only. The results for knee flexion angle and GRF parameters indicated a significant difference between a “reverse” and “go” and other types of landings, except the “side stick” landing for GRF. The “reverse” and “go” landings may present a risk for ACL injury due to the single-leg landing of these activities that have an associated mediolateral movement.  相似文献   

14.
The purpose of this study was to investigate the kinematic and metabolic effects of running on an irregular surface. We also examined how altering the frontal plane foot angle (inversion/eversion) at contact using real-time visual feedback would affect these other variables. Sixteen participants completed three running bouts lasting 5–7 minutes each on an irregular surface (IS) treadmill, a traditional smooth surface (SS) treadmill, and on SS while receiving visual feedback of the frontal plane foot angle at contact (SSF) with a goal of matching IS foot angle on SS. Frontal plane foot angle increased 40% from IS to SS (IS: 8.4 ± 4.09°, SS: 11.8 ± 4.52°, < 0.0001, ES 1.40). Knee flexion angle at contact decreased 33% from IS to SS (IS: 9.2 ± 4.88°, SS: 6.2 ± 5.03°, < 0.0001, ES 1.30). Rate of oxygen consumption decreased by 10% from IS to SS (IS: 37.9 ± 5.68 ml·kg?1·min?1, SS: 34.1 ± 5.07 ml·kg?1·min?1, P < 0.0001, ES 3.05). PSD of leg accelerations decreased by 38% (IS: 0.17 ± 0.07 g2/Hz, SS: 0.106 ± 0.05 g2/Hz, < 0.000, ES 1.69). Frontal plane foot angle decreased by 14% from SS to SSF (SS: 11.8 ± 4.52°, SSF: 10.1 ± 4.42°, P = 0.027. ES 0.62) but did not result in significant changes in any other variables. There were no significant differences in shock attenuation between any conditions (IS: ?9.8 ± 2.26 dB, SS: ?9.5 ± 3.12 dB, SSF: ?9.9 ± 2.62 dB, P = 0.671). Running with greater eversion on the irregular surface may be an attempt by runners to reduce the perceived potential of an inversion ankle sprain. As a partial compensation for the decreased foot angle, runners increased knee flexion. This maintained shock attenuation but increased the rate of oxygen consumption. Altering the foot angle at contact using feedback on the SS caused the knee angle at contact to increase, but did not change shock attenuation or metabolic cost.  相似文献   

15.
Although landing in a plantarflexion and inversion position is a well-known characteristic of lateral ankle sprains, the associated kinematics of the knee and hip is largely unknown. Therefore, the purpose of this study was to examine the changes in knee and hip kinematics during landings on an altered landing surface of combined plantarflexion and inversion. Participants performed five drop landings from 30 cm onto a trapdoor platform in three different conditions: flat landing surface, 25° inversion, or a combined 25° plantarflexion and 25° inversion. Kinematic data were collected using a seven camera motion capture system. A 2 × 3 (leg × surface) repeated measures ANOVA was used for statistical analysis. The combined surface showed decreased knee and hip flexion range of motion (ROM) and increased knee abduction ROM (p < 0.05). The altered landing surface creates a stiff landing pattern where reductions in sagittal plane motion are transferred to the frontal plane, resulting in increased knee abduction. A stiff landing pattern is frequently related to increased risk of anterior cruciate ligament injury. It may be beneficial for athletes at risk to train for alternate methods of increasing their sagittal plane motion of the knee and hip with active knee or trunk flexion.  相似文献   

16.
运用文献资料、录像观察、数理统计等研究方法对场地类型与网球运动员竞技能力发展的关系进行探讨。由于研究对象中以草地球场为主导训练环境的球员样本极少,本研究主要考察以硬地、红土场以及硬地和红土结合三种球场类型为主导训练场地类型的职业网球运动员在排名上是否存在差异。以1997—2005年ITF(国际网联)青年赛年度前10名运动员共87名男子职业球员的ATP排名进行方差分析。预分析发现,职业网球运动员获取最高职业排名的平均年限为5.8年,因此对本文研究对象ATP排名的数据获取底线为2009年。结果表明:红土场地训练环境成长的球员排名与另外两种场地环境下成才的球员最高职业排名具有显著性差异(P〈0.05,红土场球员排名平均数为121,标准差为131)。查阅国内外文献资料,从逻辑上分析了多年红土训练可能存在的额外训练效应,并提示场地因素可能成为预测职业网球运动员最高排名的指标之一。  相似文献   

17.
Tennis coaches often use the fundamental throwing skill as a training tool to develop the service action. However, recent skill acquisition literature questions the efficacy of non-specific training drills for developing complex sporting movements. Thus, this study examined the mechanical analogy of the throw and the tennis serve at three different levels of development. A 500 Hz, 22-camera VICON MX motion capture system recorded 28 elite female tennis players (prepubescent (n = 10), pubescent (n = 10), adult (n = 8)) as they performed flat serves and overhand throws. Two-way ANOVAs with repeated measures and partial correlations (controlling for group) assessed the strength and nature of the mechanical associations between the tasks. Preparatory mechanics were similar between the two tasks, while during propulsion, peak trunk twist and elbow extension velocities were significantly higher in the throw, yet the peak shoulder internal rotation and wrist flexion angular velocities were significantly greater in the serve. Furthermore, all of these peak angular velocities occurred significantly earlier in the serve. Ultimately, although the throw may help to prime transverse trunk kinematics in the serve, mechanics in the two skills appear less similar than many coaches seem to believe. Practitioners should, therefore, be aware that the throw appears less useful for priming the specific arm kinematics and temporal phasing that typifies the tennis serve.  相似文献   

18.
Abstract

The mechanics of cutting movements have been investigated extensively, but few studies have considered the rapid deceleration phase prior to turning which has been linked to muscle damage. This study used accelerometry to examine the influence of turning intensity on the last three steps of a severe turn.

Ten soccer players performed 135° “V” cuts at five different intensities. Resultant decelerations were recorded from a trunk-mounted tri-axial accelerometer. Lower limb kinematics and ground reaction forces (GRF) from the pivot foot-ground contact (FGC) were also monitored.

Average peak trunk decelerations were larger at the two preceding steps (4.37 ± 0.12 g and 4.58 ± 0.11 g) compared to the PIVOT step (4.10 ± 0.09 g). Larger peak joint flexion angular velocities were observed at PRE step (ankle: 367 ± 192 deg.s?1; knee 493 ± 252 deg.s?1) compared to PIVOT step (ankle 255 ± 183 deg.s?1; knee 377 ± 229 deg.s?1). Turn intensity did not influence peak GRF at PIVOT step.

This study highlights the importance of steps prior to turning and their high-frequency loading characteristics. It is suggested that investigations of lower limb loading during turning should include this deceleration phase and not focus solely on pivot FGC.  相似文献   

19.
The kinematics of the racket and ball near impact in tennis forehands were studied to document typical variation in successful and unsuccessful shots, in order to determine biomechanically meaningful differences in advanced players and confirm models of groundstroke trajectories. Seven tennis players (six males and one female) were videoed from the side at 180 Hz as they performed 40 forehand drives on an indoor tennis court. Vertical plane kinematics of the racket and ball near impact were analysed for sub samples of successful and unsuccessful shots for each subject. Most racket kinematic variables were very consistent (mean CV< 6.3%) for successful shots, so bio mechanically meaningful differences in angles and velocities of the racket and ball (3° and 2 m s−1) near impact could be detected between successful and unsuccessful shots. Four subjects tended to miss long and three subjects missed shots in the net that were reflected in initial ball trajectories. Mean (SD) initial trajectories for long shots were 9.8° (1.4°), while netted shots were 0.7° (1.1°) above the horizontal. The initial ball trajectories and margins for error for these subjects were smaller than those previously reported (Brody, 1987) because players tended to select mean ball trajectories close to one error than another, differing amounts of topspin, or incorrect lift and drag coefficients for tennis balls had not been published when this model was created. The present data can be used to confirm if recent models (Cookeet al., 2003; Dignallet al., 2004) more closely match actual performance by advanced players.  相似文献   

20.
A notational analysis of singles events at all four Grand Slam tournaments between 1997 and 1999 was conducted to determine the influence of the sex of the player and court surface on elite tennis strategy. Rallies of 7.1 ± 2.0 s in women's singles were significantly longer than those in men's singles (5.2 ± 1.8 s P < 0.001). Rallies of 6.3 ± 1.8 s at the Australian Open, 7.7 ± 1.7 s at the French Open, 4.3 ± 1.6 s at Wimbledon and 5.8 ± 1.9 s at the US Open were recorded. Rallies were significantly longer at the French Open than at any other tournament ( P < 0.05) and significantly shorter at Wimbledon than at any other tournament ( P < 0.05). In women's singles, 52.8 ± 12.4% of points were baseline rallies, significantly more than in men's singles (28.6 ± 19% P < 0.001). The proportion of baseline rallies played at the French Open (51.9 ± 14.2% of points) was significantly greater than at the Australian Open (46.6 ± 12.5%), Wimbledon (19.7 ± 19.4%) and the US Open (35.4 ± 19.5% P < 0.05). The results show that both the sex of the player and surface of the court have a significant influence on the nature of singles tennis at Grand Slam tournaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号