首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The aim of this study was to investigate the throwing velocity and kinematics of overarm throwing in team handball of elite female and male handball players. Kinematics and ball velocity of a 7 metre-throw in eleven elite male (age 23.6 ± 5.2 yr, body mass 87.0 ± 6.8 kg, height 1.85 ± 0.05 m) and eleven elite female (age 20.3 ± 1.8 yr, body mass 69.9 ± 5.5 kg, height 1.75 ± 0.05 m) team handball players were recorded. The analysis consisted of maximal joint angles, angles at ball release, maximal angular velocities of the joint movements, and maximal linear velocities of the distal endpoints of segments and their timing during the throw. The ball release velocity of the male handball players was significantly higher than the females (21.1 vs. 19.2 m · s(-1); p < 0.05). No major differences in kinematics were found, except for the maximal endpoint velocities of the hand and wrist segment, indicating that male and female handball players throw with the same technique. It was concluded that differences in throwing velocity in elite male and female handball players are generally not the result of changes in kinematics in the joint movements.  相似文献   

2.
The importance of proximal-to-distal sequencing in human performance throwing has been reported previously. However, a comprehensive comparison of the proximal-to-distal sequence in team-handball throwing in athletes with different training experience and competition is lacking. Therefore, the aim of the study was to compare the ball velocity and proximal-to-distal sequence in the team-handball standing throw with run-up of players of different skill (less experienced, experienced, and elite). Twenty-four male team-handball players (n = 8 for each group) performed five standing throws with run-up with maximal ball velocity and accuracy. Kinematics and ball trajectories were recorded with a Vicon motion capture system and joint movements were calculated. A specific proximal-to-distal sequence, where elbow flexion occurred before shoulder internal rotation, was found in all three groups. These results are in line with previous studies in team-handball. Furthermore, the results of the present study suggest that in the team-handball standing throw with run-up, increased playing experience is associated with an increase in ball velocity as well as a delayed start to trunk flexion.  相似文献   

3.
Previous studies on overarm throwing have described a proximal-to-distal segmental sequence. The proximal segments reached their maximal linear velocities before the distal ones. In handball, no study has demonstrated this sequence from the upper torso to the wrist, although a recent study did present a different organization. The aim of this study was to analyse the throwing arm segmental organization during handball throwing. We found that the maximal linear velocity of the shoulder occurred after the maximal linear velocity of the elbow. Moreover, the maximal angular velocity of the upper torso occurred later than that of the elbow. Hence, contrary to other disciplines, the rotation of the upper torso was not suddenly stopped just after the forward arm motion was initiated. These results may apply to handball in general or be specific to the population of handball players studied. It may be advisable in future studies to include international players.  相似文献   

4.
Previous studies on overarm throwing have described a proximal-to-distal segmental sequence. The proximal segments reached their maximal linear velocities before the distal ones. In handball, no study has demonstrated this sequence from the upper torso to the wrist, although a recent study did present a different organization. The aim of this study was to analyse the throwing arm segmental organization during handball throwing. We found that the maximal linear velocity of the shoulder occurred after the maximal linear velocity of the elbow. Moreover, the maximal angular velocity of the upper torso occurred later than that of the elbow. Hence, contrary to other disciplines, the rotation of the upper torso was not suddenly stopped just after the forward arm motion was initiated. These results may apply to handball in general or be specific to the population of handball players studied. It may be advisable in future studies to include international players.  相似文献   

5.
In order to maximise the potential for success, developing nations need to produce superior systems to identify and develop talent, which requires comprehensive and up-to-date values on elite players. This study examined the anthropometric and physical characteristics of youth female team handball players (16.07 ± 1.30 years) in non-elite (= 47), elite (= 37) and top-elite players (= 29). Anthropometric profiling included sum of eight skinfolds, body mass, stature, girths, breadths and somatotype. Performance tests included 20 m sprint, counter-movement jump, throwing velocity, repeated shuttle sprint and jump ability test, and Yo-Yo Intermittent Recovery Test Level 1. Youth top-elite players had greater body mass, lean mass, stature, limb girths and breadths than elite and non-elite players, while only stature and flexed arm were higher in elite compared to non-elite players (all P < 0.05). Sum of skinfolds and waist-to-hip ratio were similar between groups (> 0.05). Top-elite performed better in most performance tests compared to both elite and non-elite players (P < 0.05), although maximal and repeated 10 m sprints were similar between playing standards (P > 0.05). Elite outperformed non-elite players only in throwing velocity. The findings reveal that non-elite players compare unfavourably to top-elite international European players in many anthropometric and performance characteristics, and differ in a few characteristics compared to elite European club team players. This study is useful for emerging team handball nations in improving talent identification processes.  相似文献   

6.
Team handball is a popular sport worldwide that requires numerous throws to be made throughout the course of a game. Because of the upper extremity demands of repetitive throwing, it is possible that fatigue can alter the mechanics of a shot. The purpose of this study was to determine the influence of localised fatigue on jump shot kinematics and kinetics. Eleven male team handball players (23.1 ± 3.1 years; 185.1 ± 8.3 cm; 89.7 ± 12.2 kg) volunteered. An electromagnetic tracking system was used to examine the jump shot prior to and following localised fatigue. The fatiguing protocol consisted of throwing a 2.2 kg medicine ball into a rebounder until volitional fatigue. No significant kinematic or kinetic differences were observed following fatigue. Shoulder external rotation was ?74.8 ± 14.9° prior to and ?79.0 ± 14.7° following fatigue at MER. Scapula, external rotation at ball release (BR) prior to fatigue was ?2.2 ± 7.0° and ?3.2 ± 11.1° following fatigue. Scapular internal rotation, at maximum shoulder internal rotation (MIR), changed from 18.4 ± 11.2° to 20.4 ± 11.8°. Ball velocity decreased from19.8 m · s–1 to 18.8 m · s–1 (P = 0.12). Accuracy percentage in the pre-fatigue trials was 60.8 ± 14.1% and 52.8 ± 12.7% following fatigue (P = 0.20). While no significant changes were observed, it is possible that other fatiguing protocols that more closely represent the aerobic and throwing demands of the sport may have a greater effect on the kinematics and kinetics of the jump shot.  相似文献   

7.
8.
The aims of this study were to (1) investigate the influence of general anthropometric variables, handball-specific anthropometric variables, and upper-limb power and strength on ball-throwing velocity in a standing position (ν(ball)), and (2) predict this velocity using multiple regression methods. Forty-two skilled male handball players (age 21.0?±?3.0 years; height?=?1.81?±?0.07?m; body mass?=?78.3?±?11.3?kg) participated in the study. We measured general anthropometric variables (height, body mass, lean mass, body mass index) and handball-specific anthropometric parameters (hand size, arm span). Upper-limb dynamic strength was assessed using a medicine ball (2?kg) throwing test, and power using a one-repetition maximum bench-press test. All the variables studied were correlated with ball velocity. Medicine ball throwing performance was the best predictor (r?=?0.80). General anthropometric variables were better predictors (r?=?0.55-0.70) than handball-specific anthropometric variables (r?=?0.35-0.51). The best multiple regression model accounted for 74% of the total variance and included body mass, medicine ball throwing performance, and power output in the 20-kg bench press. The equation formulated could help trainers, athletes, and professionals detect future talent and test athletes' current fitness.  相似文献   

9.
Abstract

The main purpose of this article was to review a series of studies (n=23) on physical characteristics, physiological attributes, throwing velocity and accuracy, and on-court performances of male handball players – amateur players, experienced players, professional players, and players on the national team. Five main findings emerged from our review: (1) Elite players are heavier and have higher fat-free mass than amateur players. (2) The maximal oxygen uptake of male players is between 50 and 60 ml · kg?1 · min?1. (3) Throwing velocity is higher by as much as 9% in elite male players compared with amateur male players. (4) Heart rates can rise above 160 beats · min?1 in male players during a game. (5) On-court distance covered in a game averaged approximately 4 km and ranged between 2 and 5 km, depending on playing position. Our methodological concerns based on the reviewed studies are: (a) a lack of on-court physiological data; (b) a lack of experimental/manipulative studies; (c) limited data on throwing accuracy; and (d) a lack of longitudinal studies. The practical implications include: (a) strength and power exercises should be emphasized in conditioning programmes, as they are associated with both sprint performance and throwing velocity; (b) speed and agility drills should also be implemented in conditioning programmes; and (c) specificity of training based upon the position of the player is of great importance when planning strength and conditioning programmes.  相似文献   

10.
We examined the role of rotation axes during an overarm throwing task. Participants performed such task and were asked to throw a ball at maximal velocity at a target. The purpose of this study was to examine whether the minimum inertia axis would be exploited during the throwing phases, a time when internal–external rotations of the shoulder are particularly important. A motion capture system was used to evaluate the performance and to compute the potential axes of rotation (minimum inertia axis, shoulder–centre of mass axis and the shoulder–elbow axis). More specifically, we investigated whether a velocity-dependent change in rotational axes can be observed in the different throwing phases and whether the control obeys the principle of minimum inertia resistance. Our results showed that the limbs’ rotational axis mainly coincides with the minimum inertia axis during the cocking phase and with the shoulder–elbow axis during the acceleration phase. Besides these rotation axes changes, the use of interaction torque is also sequence-dependent. The sequence-dependent rotation axes changes associated with the use of interaction torque during the acceleration phase could be a key factor in the production of hand velocity at ball release.  相似文献   

11.
In Paralympic seated throwing events, the athlete can throw with and without an assistive pole. This study aimed to identify and compare performance-related kinematic variables associated with both seated throwing techniques. Twenty-nine non-disabled males (21.9 ± 2.6 years) performed 12 maximal throws using a 1-kg ball in two conditions (no-pole and pole). Automatic 3D-kinematic tracking (150 Hz) and temporal data were acquired. There was no significant difference between ball speeds at the point of release between conditions (no-pole = 12.8 ± 1.6 m/s vs. pole = 12.9 ± 1.5 m/s). There were four kinematic variables that were strongly correlated with ball speed when throwing with or without an assistive pole. These variables were elbow flexion at the start phase (pole r = .39 and no-pole r = .41), maximum shoulder external rotation angular velocity during the arm cocking phase (pole r = .42), maximum shoulder internal rotation angular velocity during the arm acceleration phase (pole r = .47), and should internal rotation angular velocity at the instant of ball release (pole r = .40). The pole clearly influenced the throwing technique with all four strongly correlated variables identified in this condition, compared to only one during the no-pole condition. When using the pole, participants produced significantly higher shoulder internal rotation angular velocities during the arm acceleration phase (pole = 367 ± 183°/s vs. no-pole = 275 ± 178°/s, p < .05) and at the instant of ball release (pole = 355 ± 115°/s vs. no-pole = 264 ± 120°/s, p < .05), compared to throwing without the pole. These findings have implications for the development of evidence-based classification systems in Paralympic seated throwing, and facilitate research that investigates the impact of impairment on seated throwing performance.  相似文献   

12.
Abstract

Release velocity and accuracy are vital components of throwing performance. However, there is no published research on these parameters for throwing in cricket. In this study, we investigated the throwing performance of 110 cricket players from six different populations: elite senior males, elite under-19 junior males, elite under-17 junior males, elite senior females, elite under-19 junior females, and sub-elite senior males. Based on a specifically designed cricket throwing test, participants were assessed for (1) maximal throwing velocity and (2) throwing accuracy at maximal velocity and at three sub-maximal velocities. Elite senior males exhibited the highest peak and mean maximal throwing velocities (P≤0.001). Furthermore, the groups of males had significantly higher peak and mean maximal throwing velocities than the groups of females (P≤0.01). A speed–accuracy trade-off existed such that all groups demonstrated improved accuracy scores at velocities between 75% and 85% maximal throwing velocity compared with 50% maximal throwing velocity and 100% perceived maximal exertion. The results indicate that sex, training experience (years training), and training volume (training time per week) may contribute to throwing performance in cricket players. Further research should focus on understanding the mechanisms behind the observed differences between these groups. This is the first study to describe the inherent throwing profiles of different cricket playing populations. Potentially, we have identified stimulus material for future training developments.  相似文献   

13.
This study sought to identify kinematic differences in finger-spin bowling actions required to generate variations in ball speed and spin between different playing groups. A 12-camera Vicon system recorded the off-spin bowling actions of six elite and 13 high-performance spin bowlers, and the “doosra” actions of four elite and two high-performance players. Forearm abduction and fixed elbow flexion in the bowling arm were higher for the elite players compared with the high-performance players. The elite bowlers when compared with the high-performance players delivered the off-break at a statistically significant higher velocity (75.1 and 67.1 km/hr respectively) and with a higher level of spin (26.7 and 22.2 rev/s respectively). Large effect sizes were seen between ball rotation, pelvic and shoulder alignment rotations in the transverse plane. Elbow extension was larger for elite bowlers over the period upper arm horizontal to ball release. Compared to the off-break, larger ranges of shoulder horizontal rotation, elbow and wrist extension were evident for the “doosra”. Furthermore, the “doosra” was bowled with a significantly longer stride length and lower ball release height. Although not significantly different, moderate to high effect size differences were recorded for pelvis rotation, elbow extension and elbow rotation ranges of motion.  相似文献   

14.
Baseball     
The purpose of this study was to quantify and compare kinematic, temporal, and kinetic characteristics of American and Korean professional pitchers in order to investigate differences in pitching mechanics, performance, and injury risks among two different cultures and populations of baseball pitchers. Eleven American and eight Korean healthy professional baseball pitchers threw multiple fastball pitches off an indoor throwing mound positioned at regulation distance from home plate. A Motion Analysis three‐dimensional automatic digitizing system was used to collect 200 Hz video data from four electronically synchronized cameras. Twenty kinematic, six temporal, and 11 kinetic variables were analyzed at lead foot contact, during the arm cocking and arm acceleration phases, at ball release, and during the arm deceleration phase. A radar gun was used to quantify ball velocity. At lead foot contact, the American pitchers had significantly greater horizontal abduction of the throwing shoulder, while Korean pitchers exhibited significantly greater abduction and external rotation of the throwing shoulder. During arm cocking, the American pitchers displayed significantly greater maximum shoulder external rotation and maximum pelvis angular velocity. At the instant of ball release, the American pitchers had significantly greater forward trunk tilt and ball velocity and significantly less knee flexion, which help explain why the American pitchers had 10% greater ball velocity compared to the Korean pitchers. The American pitchers had significantly greater maximum shoulder internal rotation torque and maximum elbow varus torque during arm cocking, significantly greater elbow flexion torque during arm acceleration, and significantly greater shoulder and elbow proximal forces during arm deceleration. While greater shoulder and elbow forces and torques generated in the American pitchers helped generate greater ball velocity for the American group, these greater kinetics may predispose this group to a higher risk of shoulder and elbow injuries.  相似文献   

15.
The purpose of this study was to quantify and compare kinematic, temporal, and kinetic characteristics of American and Korean professional pitchers in order to investigate differences in pitching mechanics, performance, and injury risks among two different cultures and populations of baseball pitchers. Eleven American and eight Korean healthy professional baseball pitchers threw multiple fastball pitches off an indoor throwing mound positioned at regulation distance from home plate. A Motion Analysis three-dimensional automatic digitizing system was used to collect 200 Hz video data from four electronically synchronized cameras. Twenty kinematic, six temporal, and 11 kinetic variables were analyzed at lead foot contact, during the arm cocking and arm acceleration phases, at ball release, and during the arm deceleration phase. A radar gun was used to quantify ball velocity. At lead foot contact, the American pitchers had significantly greater horizontal abduction of the throwing shoulder, while Korean pitchers exhibited significantly greater abduction and external rotation of the throwing shoulder. During arm cocking, the American pitchers displayed significantly greater maximum shoulder external rotation and maximum pelvis angular velocity. At the instant of ball release, the American pitchers had significantly greater forward trunk tilt and ball velocity and significantly less knee flexion, which help explain why the American pitchers had 10% greater ball velocity compared to the Korean pitchers. The American pitchers had significantly greater maximum shoulder internal rotation torque and maximum elbow varus torque during arm cocking, significantly greater elbow flexion torque during arm acceleration, and significantly greater shoulder and elbow proximal forces during arm deceleration. While greater shoulder and elbow forces and torques generated in the American pitchers helped generate greater ball velocity for the American group, these greater kinetics may predispose this group to a higher risk of shoulder and elbow injuries.  相似文献   

16.
A kinematic analysis of rugby lineout throwing   总被引:1,自引:1,他引:0  
To characterize rugby union lineout throwing technique, three experienced male rugby players performed throwing trials under varying conditions of distance and trajectory. Motion analysis permitted the recovery of joint centre coordinates at 120 Hz and the construction of a three-dimensional linked segment model for calculation of joint angle and centre of mass time histories. All participants exhibited greater accuracy at shorter throwing distances, although the accuracy decrement was less in players of higher standard. Participants demonstrated different alterations in technique when performing throws of longer distances, either showing increased magnitudes of upper-body joint angle velocities (less accurate thrower) or lower-body joint velocities (more accurate thrower). The most elite thrower exhibited greater consistency in timing of peak joint angle velocities, with an overall standard deviation of 0.008 s compared with 0.027 s for the least accurate thrower. Data from participants of lesser ability suggest that changes are made to both magnitudes and timing of joint kinematics, which leads to increased variability in performance. The implications for players and coaches include the need to develop core strength to permit limited changes to the timing and magnitude of upper-body joint actions while allowing sufficient end-point velocity to be imparted on the ball.  相似文献   

17.
Abstract

The aims of this study were to (1) investigate the influence of general anthropometric variables, handball-specific anthropometric variables, and upper-limb power and strength on ball-throwing velocity in a standing position (νball), and (2) predict this velocity using multiple regression methods. Forty-two skilled male handball players (age 21.0 ± 3.0 years; height = 1.81 ± 0.07 m; body mass = 78.3 ± 11.3 kg) participated in the study. We measured general anthropometric variables (height, body mass, lean mass, body mass index) and handball-specific anthropometric parameters (hand size, arm span). Upper-limb dynamic strength was assessed using a medicine ball (2 kg) throwing test, and power using a one-repetition maximum bench-press test. All the variables studied were correlated with ball velocity. Medicine ball throwing performance was the best predictor (r = 0.80). General anthropometric variables were better predictors (r = 0.55–0.70) than handball-specific anthropometric variables (r = 0.35–0.51). The best multiple regression model accounted for 74% of the total variance and included body mass, medicine ball throwing performance, and power output in the 20-kg bench press. The equation formulated could help trainers, athletes, and professionals detect future talent and test athletes' current fitness.  相似文献   

18.
Abstract

Research examining the proximal-to-distal sequencing of segments of the body involved in overarm throwing has been equivocal: some studies have found support for the concept while others have not. The aim of the present study, therefore, was to determine if there is a proximal-to-distal sequence in the timing of the movements of joints and the distal endpoints of segments in overarm throwing. The three-dimensional kinematics of a penalty throw in experienced team handball players (n = 11) were recorded and analysed with regard to the timing of events. We analysed the timing of the maximal velocity of the distal endpoints of six segments and the maximal angular velocity in 11 joints, as well as the initiation of these joint movements. A temporal proximal-to-distal sequence was observed only for the initiation of the joint movements. No such sequence was found for maximal velocity of the joints and distal endpoints of segments.  相似文献   

19.
We examined mechanisms of coordination that enable skilled recreational baseball players to make fast overarm throws with their skilled arm and which are absent or rudimentary in their unskilled arm. Arm segment angular kinematics in three dimensions at 1000 Hz were recorded with the search-coil technique from the arms of eight individuals who on one occasion threw with their skilled right arm and on another with their unskilled left arm. Compared with their unskilled arm, the skilled arm had: a larger angular deceleration of the upper arm in space in the forward horizontal direction; a larger shoulder internal rotation velocity at ball release (unskilled arms had a negative velocity); a period of elbow extension deceleration before ball release; and an increase in wrist velocity with an increase in ball speed. It is suggested that some of these differences in arm kinematics occur because of differences between the skilled and unskilled arms in their ability to control interaction torques (the passive torque at one joint due to motion at adjacent joints). It is proposed that one reason unskilled individuals cannot throw fast is that, unlike their skilled counterparts, they have not developed the coordination mechanisms to effectively exploit interaction torques.  相似文献   

20.
The purpose of this study was to investigate joint kinetics of the throwing arms and role of trunk motion in skilled elementary school boys during an overarm distance throw. Throwing motions of 42 boys from second, fourth, and sixth grade were videotaped with three high-speed cameras operating at 300 fps. Seven skilled boys from each grade were selected on the basis of throwing distance for three-dimensional kinetic analysis. Joint forces, torques, and torque powers of the throwing arm joints were calculated from reconstructed three-dimensional coordinate data smoothed at cut-off frequencies of 10.5–15 Hz and by the inverse dynamics method. Throwing distance and ball velocity significantly increased with school grade. The angular velocity of elbow extension before ball release increased with school grade, although no significant increase between the grades was observed in peak extension torque of elbow joint. The joint torque power of shoulder internal/external rotation tended to increase with school grade. When teaching the overarm throw, elementary school teachers should observe large backward twisting of trunk during the striding phase and should keep in mind that young children, such as second graders (age 8 years), will be unable to effectively utilise shoulder external/internal rotation during the throwing phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号