首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract

In this study, we examined hamstring muscle activation at different running speeds to help better understand the functional characteristics of each hamstring muscle. Eight healthy male track and field athletes (20.1 ± 1.1 years) performed treadmill running at 50%, 75%, 85%, and 95% of their maximum velocity. Lower extremity kinematics of the hip and knee joint were calculated. The surface electromyographic activities of the biceps femoris and semitendinosus muscles were also recorded. Increasing the running speed from 85% to 95% significantly increased the activation of the hamstring muscles during the late swing phase, while lower extremity kinematics did not change significantly. During the middle swing phase, the activity of the semitendinosus muscle was significantly greater than that of the biceps femoris muscle at 75%, 85%, and 95% of running speed. Statistically significant differences in peak activation time were observed between the biceps femoris and semitendinosus during 95%max running (P < 0.05 for stance phase, P < 0.01 for late swing phase). Significant differences in the activation patterns between the biceps femoris and semitendinosus muscles were observed as running speed was increased, indicating that complex neuromuscular coordination patterns occurred during the running cycle at near maximum sprinting speeds.  相似文献   

2.
ABSTRACT

A possible link between soccer-specific injuries, such as groin pain and the action of hip adductor muscles has been suggested. This study aimed to investigate neuromuscular activation of the adductor magnus (AM) and longus (AL) muscles during instep and side-foot soccer kicks. Eight university soccer players performed the two types of kick at 50%, 75% and 100% of the maximal ball speed. Surface electromyography (EMG) was recorded from the AM, AL, vastus lateralis (VL) and biceps femoris (BF) muscles of both kicking and supporting legs and the kicking motions were three-dimensionally captured. In the kicking leg, an increase in surface EMG with an increase in ball speed during instep kicking was noted in the AM muscle (p < 0.016), but not in AL, VL or BF muscles (p > 0.016). In the supporting leg, surface EMG of both AM and AL muscles was significantly increased with an increase in the ball speed before ball impact during both instep and side-foot kicks (p < 0.016). These results suggest that hip adductor muscles markedly contribute to either the kicking or supporting leg to emphasise the action of soccer kicks.  相似文献   

3.
The purpose of the study was to evaluate whether using only the semitendinosus as a tripled short graft would affect the electromechanical delay (EMD) of the knee flexors. EMD was evaluated in volunteers (N = 15) after they had undergone surgery for anterior cruciate ligament (ACL) reconstruction where the semitendinosus tendon alone was used as a graft. The results were compared with the intact leg and healthy controls (N = 15). After warming up, each subject performed four maximally explosive isometric contractions on an isokinetic dynamometer. Torques were measured by the dynamometer, while the electrical activity of the semitendinosus and biceps femoris muscles was detected using surface electromyography. EMD was found to be significantly increased (p = 0.001) in patients who had undergone ACL reconstruction compared to the controls. On the contrary, no significant differences (p = 0.235) were found for the biceps femoris muscle between the two groups. Similar results were found when the study group was compared with the intact leg group (p = 0.027 for semitendinosus and p = 0.859 for biceps femoris). Harvesting the semitendinosus tendon increases the EMD for the semitendinosus muscle but does not influence the EMD outcomes for the biceps femoris muscle.  相似文献   

4.
ABSTRACT

In this study, we aimed to clarify the characteristics of neuromuscular function, kinetics, and kinematics of the lower extremity during sprinting in track and field athletes with a history of strain injury. Ten male college sprinters with a history of unilateral hamstring injury performed maximum effort sprint on an athletic track. The electromyographic (EMG) activity of the long head of the biceps femoris (BFlh) and gluteus maximus (Gmax) muscles and three-dimensional kinematic data were recorded. Bilateral comparisons were performed for the EMG activities, pelvic anterior tilt angle, hip and knee joint angles and torques, and the musculotendon length of BFlh. The activity of BFlh in the previously injured limb was significantly lower than that in the uninjured limb during the late-swing phase of sprinting (p < 0.05). However, the EMG activity of Gmax was not significantly different between the previously injured and uninjured limbs. Furthermore, during the late-swing phase, a significantly more flexed knee angle (p < 0.05) and a decrease in BFlh muscle length (p < 0.05) were noted in the injured limb. It was concluded that previously injured hamstring muscles demonstrate functional deficits during the late swing phase of sprinting in comparison with the uninjured contralateral muscles.  相似文献   

5.
我国部分优秀男子跳远运动员起跳环节肌肉用力特征   总被引:2,自引:1,他引:1  
通过表面肌电遥测和高速摄影同步测试,揭示优秀跳远运动员起跳环节肌肉用力特征.结果显示:在起跳环节中,股外侧肌、股内侧肌、股二头肌、比目鱼肌、腓肠肌是起跳腿的主要用力肌肉;在起跳腿即将着地前,所测肌肉均有较明显的预激活现象;着地后,肌肉用力的激活顺序依次为胫骨前肌、股二头肌与股内侧肌、股外侧肌、比目鱼肌、腓肠肌内侧头、股直肌、臀大肌;肌肉用力的失活顺序依次为胫骨前肌、股直肌、股内侧肌、股外侧肌、臀大肌、腓肠肌、股二头肌、比目鱼肌;肌肉用力持续时间长短依次为股二头肌、比目鱼肌、股外侧肌、腓肠肌内侧头和股内侧肌、臀大肌、股直肌、胫骨前肌.起跳腿拮抗肌共同收缩的特征为:缓冲阶段踝关节拮抗肌共同收缩最强烈,而在蹬伸阶段膝关节拮抗肌共同收缩最强烈.  相似文献   

6.
In the shot put, the athlete’s muscles are responsible for generating the impulses to move the athlete and project the shot into the air. Information on phasic muscle activity is lacking for the glide shot put event and therefore important technical information for coaches is not currently available. This study provides an electromyography (EMG) analysis of the muscle activity of the legs during shot put. Fifteen right-handed Irish national level shot putters performed six maximum effort throws using the glide shot put technique. EMG records of eight bilateral lower limb muscles (rectus femoris, biceps femoris, medial- and lateral-gastrocnemius) were obtained during trials. Analysis using smooth EMG linear envelopes revealed patterns of muscle activity across the phases of the throw and compare men and women performers. The results showed that the preferred leg rectus femoris, the preferred leg biceps femoris and the non-preferred leg biceps femoris play important roles in the glide technique, with the total duration of high volumes of activity between 34 and 53% of the throw cycle. A comprehensive understanding of movement and muscle activation patterns for coaches could be helpful to facilitate optimal technique throughout each of the key phases of the event.  相似文献   

7.
The relationship between muscle co-activation and energy cost of transport and risk of injury (initial loading rate and joint stiffness) has not been jointly studied. Fourteen elite Kenyan male runners were tested at two speeds (12 and 20 km · h?1), where oxygen consumption, kinematic, kinetic and electromyography were recorded. Electromyography of seven lower limb muscles was recorded. Pre-activation and ground contact of agonist:antagonist co-activation was determined. All muscles displayed higher activity during pre-activation except rectus femoris (RF). Conversely, no differences were found during ground contact except for higher biceps femoris (BF) at 20 km · h?1. Knee stiffness was correlated to RF–BF co-activation during both pre-activation and ground contact at both running speeds. However, energy cost of transport was only positively correlated to the above-mentioned muscle pairs at 20 km · h?1 (r = 0620, P = 0.032; r = 0.682, P = 0.015, respectively). These findings emphasise the influence of neuromuscular control and performance and its support to musculoskeletal system to optimise function and modulate risk of injury. Further, neuromuscular activity during terminal swing is also important and necessary to execute and maintain performance.  相似文献   

8.
The aim of this study was to determine the effect of prior cycling on EMG activity of selected lower leg muscles during running. Ten elite level triathletes underwent two testing sessions at race pace: a 40 km cycle followed by a 2 km run (CR) and a 10 km run followed by a 2 km run (RR). EMG data from selected lower limb muscles were collected at three sections of each run (0 km, 1 km and 2 km) for six strides using a portable data logger. Significant differences (p < 0.05) between condition were found for the level of activation (Lact) for biceps femoris (BF) during stance and vastus lateralis (VL) during flight and stance. Vastus medialis (VM) changed in Lact, during flight, between sections in the 2 km run. Furthermore, significant differences (p < 0.05) between condition were found for BF during stance and for rectus femoris (RF) and VM during flight. There was a significant difference (p < 0.05) in the duration of VL activation (Dact) across sections of the 2 km run. Findings from this investigation highlight changes in muscle function when changing from cycling to running and indicate a need to train specifically for the cycle to run transition. Such training may improve performance and reduce the risk of injury.  相似文献   

9.
ABSTRACT

This study aimed to investigate the influence of different mountain bike wheel diameters on muscle activity and whether larger diameter wheels attenuate muscle vibrations during cross-country riding. Nine male competitive mountain bikers (age 34.7 ± 10.7 years; stature 177.7 ± 5.6 cm; body mass 73.2 ± 8.6 kg) participated in the study. Riders performed one lap at race pace on 26, 27.5 and 29 inch wheeled mountain bikes. sEMG and acceleration (RMS) were recorded for the full lap and during ascent and descent phases at the gastrocnemius, vastus lateralis, biceps brachii and triceps brachii. No significant main effects were found by wheel size for each of the four muscle groups for sEMG or acceleration during the full lap and for ascent and descent (P > .05). When data were analysed between muscle groups, significant differences were found between biceps brachii and triceps brachii (P < .05) for all wheel sizes and all phases of the lap with the exception of for the 26 inch wheel during the descent. Findings suggest wheel diameter has no influence on muscle activity and vibration during mountain biking. However, more activity was observed in the biceps brachii during 26 inch wheel descending. This is possibly due to an increased need to manoeuvre the front wheel over obstacles.  相似文献   

10.
The purpose of this study was to investigate the time series relationships between the peak musculotendon length and electromyography (EMG) activation during overground sprinting to clarify the risk of muscle strain injury incidence in each hamstring muscle. Full-body kinematics and EMG of the right biceps femoris long head (BFlh) and semitendinosus (ST) muscles were recorded in 13 male sprinters during overground sprinting at maximum effort. The hamstring musculotendon lengths during sprinting were computed using a three-dimensional musculoskeletal model. The time of the peak musculotendon length, in terms of the percentage of the running gait cycle, was measured and compared with that of the peak EMG activity. The maximum length of the hamstring muscles was noted during the late swing phase of sprinting. The peak musculotendon length was synchronous with the peak EMG activation in the BFlh muscle, while the time of peak musculotendon length in the ST muscle occurred significantly later than the peak level of EMG activation (p < 0.05). These results suggest that the BFlh muscle is exposed to an instantaneous high tensile force during the late swing phase of sprinting, indicating a higher risk for muscle strain injury.  相似文献   

11.
Triathlon     
The aim of this study was to determine the effect of prior cycling on EMG activity of selected lower leg muscles during running. Ten elite level triathletes underwent two testing sessions at race pace: a 40 km cycle followed by a 2 km run (CR) and a 10 km run followed by a 2 km run (RR). EMG data from selected lower limb muscles were collected at three sections of each run (0 km, 1 km and 2 km) for six strides using a portable data logger. Significant differences (p < 0.05) between condition were found for the level of activation (Lact) for biceps femoris (BF) during stance and vastus lateralis (VL) during flight and stance. Vastus medialis (VM) changed in Lact, during flight, between sections in the 2 km run. Furthermore, significant differences (p < 0.05) between condition were found for BF during stance and for rectus femoris (RF) and VM during flight. There was a significant difference (p < 0.05) in the duration of VL activation (Dact) across sections of the 2 km run. Findings from this investigation highlight changes in muscle function when changing from cycling to running and indicate a need to train specifically for the cycle to run transition. Such training may improve performance and reduce the risk of injury.  相似文献   

12.
Electromyographic (EMG) activity of the leg muscles and the ground reaction forces were recorded in 17 elite male middle-distance runners, who performed isometric maximal voluntary contractions (MVC) as well as running at different speeds. Electromyograms were recorded from the gluteus maximus, vastus lateralis, biceps femoris, gastrocnemius and tibialis anterior. The results indicated that the averaged EMG (aEMG) activities of all the muscles studied increased (P?<?0.05) with increasing running speed, especially in the pre-contact and braking phases. At higher speeds, the aEMG activities of the gastrocnemius, vastus lateralis, biceps femoris and gluteus maximus exceeded 100% MVC in these same phases. These results suggest that maximal voluntary contractions cannot be used as an indicator of the full activation potential of human skeletal muscle. Furthermore, the present results suggest that increased pre-contact EMG potentiates the functional role of stretch reflexes, which subsequently increases tendomuscular stiffness and enhances force production in the braking and/or propulsive phases in running. Furthermore, a more powerful force production in the optimal direction for increasing running speed effectively requires increased EMG activity of the two-joint muscles (biceps femoris, rectus femoris and gastrocnemius) during the entire running cycle.  相似文献   

13.
Abstract

Previous studies have shown that cycling can directly influence neuromuscular control during subsequent running in some highly trained triathletes, despite these triathletes' years of practice of the cycle–run transition. The aim of this study was to determine whether cycling has the same direct influence on neuromuscular control during running in moderately trained triathletes. Fifteen moderately trained triathletes participated. Kinematics of the pelvis and lower limbs and recruitment of 11 leg and thigh muscles were compared between a control run (no prior exercise) and a 30 min run that was preceded by a 15 min cycle (transition run). Muscle recruitment was different between control and transition runs in only one of 15 triathletes (<7%). Changes in joint position (mean difference of 3°) were evident in five triathletes, which persisted beyond 5 min of running in one triathlete. Our findings suggest that some moderately trained triathletes have difficulty reproducing their pre-cycling movement patterns for running initially after cycling, but cycling appears to have little influence on running muscle recruitment in moderately trained triathletes.  相似文献   

14.
The present study aimed to compare muscle coordination strategies of the upper and lower limb muscles between beginners and elite breaststroke swimmers. Surface electromyography (EMG) of eight muscles was recorded in 16 swimmers (8 elite, 8 beginners) during a 25 m swimming breaststroke at 100% of maximal effort. A decomposition algorithm was used to identify the muscle synergies that represent the temporal and spatial organisation of muscle coordination. Between-groups indices of similarity and lag times were calculated. Individual muscle patterns were moderately to highly similar between groups (between-group indices range: 0.61 to 0.84). Significant differences were found in terms of lag time for pectoralis major (< 0.05), biceps brachii, rectus femoris and tibialis anterior (< 0.01), indicating an earlier activation for these muscles in beginners compared to elites (range: ?13.2 to ?3.8% of the swimming cycle). Three muscle synergies were identified for both beginners and elites. Although their composition was similar between populations, the third synergy exhibited a high within-group variability. Moderate to high indices of similarity were found for the shape of synergy activation coefficients (range: 0.63 to 0.88) but there was a significant backward shift (?8.4% of the swimming cycle) in synergy #2 for beginners compared to elites. This time shift suggested differences in the global arm-to-leg coordination. These results indicate that the synergistic organisation of muscle coordination during breaststroke swimming is not profoundly affected by expertise. However, specific timing adjustments were observed between lower and upper limbs.  相似文献   

15.
Abstract

This prospective cohort study described return-to-play (RTP) data for different types of muscle injuries in male elite-level football players in Europe. Eighty-nine European professional teams were followed between 2001 and 2013. Team medical staff recorded individual player exposure and time-loss injuries. A total of 17,371 injuries occurred, including 5603 (32%) muscle injuries. From 2007, we received results from 386 magnetic resonance imaging (MRI) examinations, and radiological grading was performed. A negative MRI was associated with shorter recovery time (6 ± 7 days). Lay-off days were correlated with MRI grading of thigh muscle injuries (< 0.001). Among hamstring injuries, 83% occurred to the biceps femoris, 12% affected the semimembranosus and 5% the semitendinosus. Recurrence rate was higher among biceps femoris injuries (18%) compared with semitendinosus and semimembranosus injuries (2% together). Groin muscle injuries caused shorter median absence (9 days) than hamstring (13 days; < 0.001), quadriceps (12 days; < 0.001) and calf muscle (13 days; < 0.001) injuries. Overall, we found that MRI was valuable for prognosticating RTP, with radiological grading associated with lay-off times after injury. Re-injuries were common in biceps femoris injuries but rare in semitendinosus and semimembranosus injuries.  相似文献   

16.
Abstract

The direct effects of cycling on movement and muscle recruitment patterns (neuromuscular control) during running are unknown but critical to success in triathlon. We outline and test a new protocol for investigating the direct influence of cycling on neuromuscular control during running. Leg movement (three-dimensional kinematics) and muscle recruitment (surface electromyography, EMG) were compared between a control run (no prior exercise) and a 30-min transition run that was preceded by 20 min of cycling. We conducted three experiments investigating: (a) the repeatability (between-day reliability) of the protocol; (b) the ability of the protocol to investigate, in highly trained national or international triathletes, the direct influence of cycling on neuromuscular control during running independent of neuromuscular fatigue; and (c) the ability of the protocol to provide a control, or baseline, measure of neuromuscular control (determined using a measure of stability) without causing fatigue. Kinematic and EMG measures of neuromuscular control during running showed moderate to high repeatability: mean coefficients of multiple correlation for repeatability of EMG and kinematics were 0.816 ± 0.014 and 0.911 ± 0.031, respectively. The protocol provided a robust baseline measure of neuromuscular control during running without causing neuromuscular fatigue (coefficients of multiple correlation for stability of EMG and kinematics were 0.827 ± 0.023 and 0.862 ± 0.054), while EMG and force data provided no evidence of fatigue. The protocol outlined here is repeatable and can be used to measure any direct influence of cycling on neuromuscular control during running.  相似文献   

17.
The objective of this study is to clarify the functional roles of upper limb muscles during standing and seated cycling when power output increases. We investigated the activity of seven upper limb and trunk muscles using surface electromyography (EMG). Power outputs ranged from ~100–700 W with a pedalling frequency of 90 revolution per minute. Three-dimensional handle and pedal forces were simultaneously recorded. Using non-negative matrix factorisation, we extracted muscle synergies and we analysed the integrated EMG and EMG temporal patterns. Most of the muscles showed tonic activity that became more phasic as power output increased. Three muscle synergies were identified, associated with (i) torso stabilisation, (ii) compensation/generation of trunk accelerations and (iii) upper body weight support. Synergies were similar for seated and standing positions (Pearson’s r > 0.7), but synergy #2 (biceps brachii, deltoidus and brachioradialis) was shifted forward during the cycle (~7% of cycle). The activity levels of synergy #1 (latissimus dorsi and erector spinae) and synergy #2 increased markedly above ~500 W (i.e., ~+40–70% and +130–190%) and during periods corresponding to ipsi- and contralateral downstrokes, respectively. Our study results suggest that the upper limb and trunk muscles may play important roles in cycling when high power outputs are required.  相似文献   

18.
目的:研究我国优秀男子拳击运动员后手直拳出拳击打环节相关肌群的sEMG特征及其相应的运动学变化,为拳击专项力量训练提供参考.方法:通过表面肌电和三维红外高速摄像系统同步测试方法,采集6名高水平男子拳击运动员后手直拳出拳击打环节表面肌电和运动学的相关数据.结果:1)出拳击打环节,肌肉活动顺序为:腓肠肌→股二头肌→三角肌前束→肱三头肌→肱二头肌长头→肱桡肌.2)击打过程中三角肌前束、肱二头肌和肱三头肌肉在相应时间位置上出现明显的预激活和共收缩现象.3)肌肉做功百分比排序为:三角肌前束>肱三头肌>股二头肌>腓肠肌>肱桡肌>肱二头肌长头,aEMG计算结果与肌肉做功百分比保持相一致的趋势.4)肩关节、上臂环节质心和拳心速度的峰值在击打过程中呈现次序性.结论:拳击后直拳出拳击打环节所选肌肉活动呈现从下肢向上肢激活的次序性.击打过程中三角肌前束、肱二头肌和肱三头肌肉在相应时间位置上出现的预激活和共收缩现象可能是反映运动员技术水平和特点的指标.在肌肉做功百分比和aEMG方面,三角肌前束、肱三头肌和股二头肌在动作过程中表现出相对重要的地位.上肢相关肌群的活动次序与肩关节、上臂环节质心和拳心速度变化的时序性有着合理的解剖学相关,是产生上肢开放链鞭打动作的根本原因.  相似文献   

19.
This study aimed to investigate the effects of forward trunk lean on hamstring muscle kinematics during sprinting. Eight male sprinters performed maximal-effort sprints in two trunk positions: forward lean and upright. A three-dimensional musculoskeletal model was used to compute the musculotendon lengths and velocity of the biceps femoris long head, semitendinosus, and semimembranosus muscles during the sprinting gait cycle. The musculotendon lengths of all the three hamstring muscles at foot strike and toe-off were significantly greater during the forward trunk lean sprint than during the upright trunk sprint. In addition, a positive peak musculotendon lengthening velocity was observed in the biceps femoris long head and semimembranosus muscles during the late stance phase, and musculotendon lengths at that instant were significantly greater during the forward trunk lean sprint than during the upright trunk sprint. The present study provides significant evidence that a potential for hamstring muscle strain injury involving forward trunk lean sprinting would exist during the stance phase. The results also indicate that the biceps femoris long head and semimembranosus muscles are stretched during forward trunk lean sprinting while contracting eccentrically in the late stance phase; thus, the elongation load on these muscles could be increased.  相似文献   

20.
The aim of this study was to investigate the effect of cadence on volume load (VLoad) and muscle activity during agonist –antagonist paired sets (APS) in the lower body. Twelve trained men (24.0 ± 3.3 years; 78.3 ± 9.7 kg; 1.77 ± 0.58 m) volunteered to participate in this study. After the 10 maximum repetition test for leg extension and seated leg curl, participants performed three experimental protocols: first protocol (traditional)—three sets of only leg extension (60 bpm); second protocol (fast cadence)—three sets of leg extension, with each set preceded by one set on the seated leg curl with fast cadence (90 bpm); third protocol (slow cadence)—similar to the second, but seated leg curl with slow cadence (40 bpm). The total number of repetitions, VLoad and the electromyography activity for the vastus lateralis, vastus medialis and rectus femoris muscles were recorded. The VLoad was higher during APS than the traditional method, but the cadence (fast or slow) of antagonist exercise did not influence VLoad. Muscle activity of vastus lateralis was higher during traditional protocol; on the other hand, rectus femoris showed higher activity on APS fast cadence protocol, indicating that APS has a different influence on quadriceps components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号