首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Abstract

The purpose of this study was to determine the influence of lumbar spine extension and erector spinae muscle activation on vertical jump height during maximal squat jumping. Eight male athletes performed maximal squat jumps. Electromyograms of the erector spinae were recorded during these jumps. A simulation model of the musculoskeletal system was used to simulate maximal squat jumping with and without spine extension. The effect on vertical jump height of changing erector spinae strength was also tested through the simulated jumps. Concerning the participant jumps, the kinematics indicated a spine extension and erector spinae activation. Concerning the simulated jumps, vertical jump height was about 5.4 cm lower during squat jump without trunk extension compared to squat jump. These results were explained by greater total muscle work during squat jump, more especially by the erector spinae work (+119.5 J). The erector spinae may contribute to spine extension during maximal squat jumping. The simulated jumps confirmed this hypothesis showing that vertical jumping was decreased if this muscle was not taken into consideration in the model. Therefore it is concluded that the erector spinae should be considered as a trunk extensor, which enables to enhance total muscle work and consequently vertical jump height.  相似文献   

2.
The study examined the differences between boys and adults after an intense stretch-shortening cycle fatigue protocol on neuromechanical parameters of the lower limb. Thirteen boys (9–11 years old) and 13 adult men (22–28 years old) were tested for maximal isometric voluntary knee extension torque and drop jump (DJ) performance from 30 cm before and immediately after a fatigue protocol, consisted of 10 × 10 maximum effort vertical jumps. Three-dimensional kinematics, kinetics and electromyographic (EMG) parameters of the lower extremities muscles were recorded during DJs before and after the fatigue test. The results indicated that reduction in maximal isometric torque and jumping performance was significantly higher in adults compared to boys. Vertical ground reaction forces, contact time and maximum knee flexion increased in a greater extend in adults than in boys. In addition, preactivation, EMG agonist activity, knee joint stiffness and stretch reflex decreased more in adults than in boys at all the examined phases of jumping tasks. It is concluded that employed fatigue protocol induced acute reduction in performance and altered motor control during jumping in both age groups. However, the differences in the level of fatigue between the 2 groups could be attributed to neuromuscular, mechanical and kinematic parameters observed between groups.  相似文献   

3.
Abstract

In recent years, a method of plyometrics (exercises that cause a rapid lengthening of a muscle prior to contraction) called depth jumping has become a part of the training routine of many athletes. Two experiments are described in which the effectiveness of the exercises is examined. In Experiment 1, undergraduate students in beginning weight training classes trained with three different jumping programs: (1) maximum vertical jumps, (2) 0.3 m depth jumps, and (3) 0.75 m and 1.10 m depth jumps. In addition, all groups also lifted weights. In Experiment 2, a weight training class and the volleyball team at Brigham Young University-Hawaii were divided into two groups. One group lifted weights and performed 0.75 and 1.10 m depth jumps. The other group only lifted weights. In Experiment 1, the three training programs resulted in increases in one repetition maximum (1 RM) squat strength, isometric knee extension strength, and in vertical jump; however, there were no significant differences between treatments. In Experiment 2, all groups made significant increases in vertical jump, except the group of weight lifters, who did no jumping. It was concluded that depth jumps are effective but not more effective than a regular jumping routine.  相似文献   

4.
ABSTRACT

We aimed to determine key biomechanical parameters explaining age-related jumping performance differences in youth elite female soccer players. Multiple biomechanical parameters from countermovement (CMJ) squat (SJ) and drop (DJ) jump testing of elite female soccer players (n = 60) within the same national training centre were analysed across ages 9-11y, 12-14y and 15-19y. Effects of age group and jump type on jump height were found, with the older jumping higher than the younger groups in all jumps (P < 0.05). For DJ, higher reactive strength index was found for older, compared to each younger group (P < 0.001). For CMJ and SJ, peak power was the most decisive characteristic, with significant differences between each group for absolute peak power (P < 0.0001) and body-weight-normalised peak power in CMJ (57 ± 7W/kg, 50 ± 7W/kg, 44.7 ± 5.5W/kg; P < 0.05) and between the older and each younger group in SJ (56.7 ± 7.1W/kg, 48.9 ± 7.1W/kg, 44.6 ± 6W/kg; P < 0.01). Age-related differences in jumping performance in youth elite female soccer players appear to be due to power production during standing jumps and by the ability to jump with shorter ground contact times during reactive jumps.  相似文献   

5.
Abstract

The aims of this study were to: (1) assess the reliability of various kinetic and temporal variables for unilateral vertical, horizontal, and lateral countermovement jumps; (2) determine whether there are differences in vertical ground reaction force production between the three types of jumps; (3) quantify the magnitude of asymmetry between limbs for variables that were established as reliable in a healthy population and whether asymmetries were consistent across jumps of different direction; and (4) establish the best kinetic predictor(s) of jump performance in the vertical, horizontal, and lateral planes of motion. Thirty team sport athletes performed three trials of the various countermovement jumps on both legs on two separate occasions. Eccentric and concentric peak force and concentric peak power were the only variables with acceptable reliability (coefficient of variation = 3.3–15.1%; intra-class correlation coefficient = 0.70–0.96). Eccentric and concentric peak vertical ground reaction force (14–16%) and concentric peak power (45–51%) were significantly (P < 0.01) greater in the vertical countermovement jump than in the horizontal countermovement jump and lateral countermovement jump, but no significant difference was found between the latter two jumps. No significant leg asymmetries (–2.1% to 9.3%) were found in any of the kinetic variables but significant differences were observed in jump height and distance. The best single predictors of vertical countermovement jump, horizontal countermovement jump, and lateral countermovement jump performance were concentric peak vertical power/body weight (79%), horizontal concentric peak power/body weight (42.6%), and eccentric peak vertical ground reaction force/body weight (14.9%) respectively. These findings are discussed in relation to monitoring and developing direction-specific jump performance.  相似文献   

6.
Abstract

The aim of this study was to examine the effects of arm-swing and sporting activity on jump height and jump height variability of countermovement jumps in adolescent students to inform correct jumping technique in different settings. Altogether, 324 students (grades 5–11) performed three countermovement jumps with bilateral arm-swings and three countermovement jumps without arm-swings on a force platform. The participants were divided into three groups based on sporting activity. The groups with the most (“active group”; more than 6 h formal athletics in a sport club per week) and least active (“sedentary group”; less than 3 h formal athletics in a sport club per week) participants were compared. Jump height was calculated for all jumps, and the best trial of three was used for further analysis. Jump height variability was indicated by the coefficient of variation over three jumps. The reliability of jump height was determined using the intra-class correlation coefficient (ICC) over three trials of each jumping technique. The reliability of jump height was very high for all conditions (ICC: 0.90–0.96). Jump height was significantly higher for countermovement jumps with than without arm-swings for both groups. Jump height in the active group was significantly greater than in the sedentary group for both jumping techniques. A significant interaction between jumping technique and sporting activity indicates a greater benefit of arm-swing in the active than in the sedentary participants. No significant differences between groups were observed for jump height variability. Jump height can be measured reliably in active and sedentary adolescent individuals for both jumping techniques. The relevant jumping technique should be chosen with respect to the context of its application and based on its suitability for the individual and task of interest.  相似文献   

7.
Persistent biomechanical and jumping capacity alterations have been observed among female athletes who have sustained anterior cruciate ligament (ACL) injuries. The purpose of this study was to examine if biomechanical jumping differences persist among a cohort of elite female handball players with previous ACL reconstruction several years after return to top-level competition. In order to achieve this goal, a direct mechanics simplified analysis by using a single Inertial Sensor Unit (IU) was used. Twenty-one elite female (6 anterior cruciate ligament reconstructed and 15 uninjured control players) handball players were recruited and evaluated 6.0 ± 3.5 years after surgical anterior cruciate ligament reconstruction. Bilateral and unilateral vertical jumps were performed to evaluate the functional performance and a single inertial sensor unit was employed in order to collect 3D acceleration and 3D orientation data. Previously ACL-reconstructed analysed athletes demonstrated significant (p < 0.05) alterations in relation to the three-dimensional axis (XYZ) supported accelerations and differing jump phase durations, including jumping performance values, in both bilateral and unilateral jumping manoeuvres several years after ACL reconstruction. Identification of the encountered deficits through the use of an IU devise could provide clinicians with a new reliable tool for movement analysis in a clinical setting.  相似文献   

8.
Introduction: Wearable activity monitors have been developed for jump height assessment, but the Blast Athletic Performance monitor has not yet been validated, and it remains unclear if the Blast can track changes across a sports season. Methods: Collegiate women’s volleyball players (n = 20) wore the Blast monitor (waistband) while performing standing vertical jumps (SVJs) and one-step vertical jumps (OSJs) weekly during and after a 9-week season. Jump heights from the Blast were compared to a Vertec (criterion). Results: Correlations of Blast and Vertec were moderately high (r = 0.67–0.69), but the Blast underestimated SVJ and OSJ (9.2–10.0 cm), with mean absolute percent errors 19.8–21.0%. A + 23% correction factor reduced errors to 10.5–11.3%. The Blast did not detect small decreases (2–4 cm) in criterion-measured jump height in the postseason. Conclusion: The Blast underestimated jump height and had limited ability to detect changes of up to 5.0 cm following a volleyball season. A relative correction lowered, but did not eliminate, measurement error.  相似文献   

9.
Mechanography during the vertical jump may enhance screening and determining mechanistic causes underlying physical performance changes. Utility of jump mechanography for evaluation is limited by scant test-retest reliability data on force-time variables. This study examined the test-retest reliability of eight jump execution variables assessed from mechanography. Thirty-two women (mean±SD: age 20.8 ± 1.3 yr) and 16 men (age 22.1 ± 1.9 yr) attended a familiarization session and two testing sessions, all one week apart. Participants performed two variations of the squat jump with squat depth self-selected and controlled using a goniometer to 80º knee flexion. Test-retest reliability was quantified as the systematic error (using effect size between jumps), random error (using coefficients of variation), and test-retest correlations (using intra-class correlation coefficients). Overall, jump execution variables demonstrated acceptable reliability, evidenced by small systematic errors (mean±95%CI: 0.2 ± 0.07), moderate random errors (mean±95%CI: 17.8 ± 3.7%), and very strong test-retest correlations (range: 0.73–0.97). Differences in random errors between controlled and self-selected protocols were negligible (mean±95%CI: 1.3 ± 2.3%). Jump execution variables demonstrated acceptable reliability, with no meaningful differences between the controlled and self-selected jump protocols. To simplify testing, a self-selected jump protocol can be used to assess force-time variables with negligible impact on measurement error.  相似文献   

10.
Resisted sprint training consists of performing overloaded sprints, which may produce greater effects than traditional sprint training. We compared a resisted sprint training with overload control versus an unresisted sprint training program on performance in soccer players. Eighteen elite athletes were randomly assigned to resisted (RST) or unresisted sprint training protocol (UR). Before and after a 6-week training period, sprinting ability, change of direction speed (COD), vertical jumps (SJ and CMJ), mean power (MP) and mean propulsive power (MPP) at distinct loads were assessed. Both groups improved sprinting ability at all distances evaluated (5m: UR = 8%, RST = 7%; 10m: UR = 5%, RST = 5%; 15m: UR = 4%, RST = 4%; 20m: UR = 3%, RST = 3%; 25m: UR = 2%, RST = 3%;), COD (UR = 6%; RST = 6%), SJ (UR = 15%; RST = 13%) and CMJ (UR = 15%; RST = 15%). Additionally, both groups increased MP and MPP at all loads evaluated. The between-group magnitude-based inference analysis demonstrated comparable improvement (“trivial” effect) in all variables tested. Finally, our findings support the effectiveness of a short-term training program involving squat jump exercise plus sprinting exercises to improve the performance of soccer players.  相似文献   

11.
Whilst previous research has highlighted significant relationships between golfers’ clubhead velocity (CHV) and their vertical jump height and maximum strength, these field-based protocols were unable to measure the actual vertical ground reaction force (vGRF) variables that may correlate to performance. The aim of this study was to investigate relationships between isometric mid-thigh pull (IMTP), countermovement jump (CMJ), squat jump (SJ) and drop jump (DJ) vGRF variables and CHV in highly skilled golfers. Twenty-seven male category 1 golfers performed IMTP, CMJ, SJ and DJ on a dual force platform. The vertical jumps were used to measure positive impulse during different stretch-shortening cycle velocities, with the IMTP assessing peak force (PF) and rate of force development (RFD). Clubhead velocity was measured using a TrackMan launch monitor at a golf driving range. Pearsons correlation coefficient analyses revealed significant relationships between peak CHV and CMJ positive impulse (r = 0.788, < 0.001), SJ positive impulse (r = 0.692; < 0.001), DJ positive impulse (r = 0.561, < 0.01), PF (r = 0.482, < 0.01), RFD from 0–150 ms (r = 0.343, < 0.05) and RFD from 0–200 ms (r = 0.398, < 0.05). The findings from this investigation indicate strong relationships between vertical ground reaction force variables and clubhead velocity.  相似文献   

12.
Abstract

An increase in the period over which a muscle generates force can lead to the generation of greater force and, therefore, for example in jumping, to greater jump height. The aim of this study was to examine the effect of squat depth on maximum vertical jump performance. We hypothesized that jump height would increase with increasing depth of squat due to the greater time available for the generation of muscular force. Ten participants performed jumps from preferred and deep squat positions. A computer model simulated jumps from the different starting postures. The participants showed no difference in jump height in jumps from deep and preferred positions. Simulated jumps produced similar kinematics to the participants' jumps. The optimal squat depth for the simulated jumps was the lowest position the model was able to jump from. Because jumping from a deep squat is rarely practised, it is unlikely that these jumps were optimally coordinated by the participants. Differences in experimental vertical ground reaction force patterns also suggest that jumps from a deep squat are not optimally coordinated. These results suggest there is the potential for athletes to increase jump performance by exploiting a greater range of motion.  相似文献   

13.
As hill jumps are very time-consuming, ski jumping athletes often perform various imitation jumps during training. The performed jumps should be similar to hill jumps, but a direct comparison of the kinetic and kinematic parameters has not been performed yet. Therefore, this study aimed to correlate 11 common parameters during hill jumps (Oberstdorf Germany), squat jumps (wearing indoor shoes), and various imitation jumps (rolling 4°, rolling flat, static; jumping equipment or indoor shoes) on a custom-built instrumented vehicle with a catch by the coach. During the performed jumps, force and video data of the take-off of 10 athletes were measured. The imitation and squat jumps were then ranked. The main difference between the hill jumps and the imitation and squat jumps is the higher maximal force loading rate during the hill jumps. Imitation jumps performed on a rolling platform, on flat ground were the most similar to hill jumps in terms of the force–time, and leg joint kinematic properties. Thus, non-hill jumps with a technical focus should be performed from a rolling platform with a flat inrun with normal indoor shoes or jumping equipment, and high normal force loading rates should be the main focus of imitation training.  相似文献   

14.
Abstract

To determine the time course of performance responses after an acute bout of plyometric exercise combined with high and low intensity weight training, a 3-group (including a control group), repeated-measures design was employed. Changes in performance were monitored through jumping ability by measuring countermovement and squat jumping, and strength performance assessment through isometric and isokinetic testing of knee extensors (at two different velocities). Participants in both experimental groups performed a plyometric protocol consisting of 50 jumps over 50 cm hurdles and 50 drop jumps from a 50 cm plyometric box. Additionally, each group performed two basic weight exercises consisting of leg presses and leg extensions at 90–95% of maximum muscle strength for the high intensity group and 60% of maximum muscle strength for the low intensity group. The results of the study suggest that an acute bout of intense plyometric exercise combined with weight exercise induces time-dependent changes in performance, which are also dependent on the nature of exercise protocol and testing procedures. In conclusion, acute plyometric exercise with weight exercise may induce a substantial decline in jumping performance for as long as 72 hours but not in other forms of muscle strength.  相似文献   

15.
The purpose of this study was to examine the effects of a 10 week contrast training (CT) programme (isometric + plyometric) on jumping, sprinting abilities and agility performance in prepubertal basketball players. Fifty-eight children from a basketball academy (age: 8.72 ± 0.97 years; body mass index: 17.22 ± 2.48 kg/m2) successfully completed the study. Participants were randomly assigned to experimental groups (EG, n = 30) and control groups (CG, n = 28). The CT programme was included in the experimental group’s training sessions – twice a week – as part of their usual weekly training regime. This programme included 3 exercises: 1 isometric and 2 plyometric. Jumping, sprinting and agility performance were assessed before and after the training programme. Significant differences were found in posttest between EG and CG in sprint and T-test: EG showed better results than CG. Furthermore, there were significant differences in posttest-pretest between EG and CG in squat jump, countermovement jump, drop jump, sprint and T-test with the EG showing better results than CG. The CT programme led to increases in vertical jump, sprint and agility levels, so that the authors suggest that prepubertal children exhibit high muscular strength trainability.  相似文献   

16.
Artistic gymnasts are frequently exposed to both low- and high-magnitude loads through impacts with the apparatus. These impact loads are thought to be associated with the high injury rates observed in gymnastics. Due to the variable apparatus and surfaces in gymnastics, impact loads during training are difficult to quantify. This study aimed to use triaxial accelerometers mounted on the back to assess impact loading during jumping and landing tasks. Twelve participants were fitted with an accelerometer on their upper and lower back, before performing a continuous hopping task, as well as drop landings and rebound jumps from various heights (37.5, 57.5, and 77.5 cm) onto a force platform. Peak resultant acceleration (PRA) was low-pass filtered with four cut-off frequencies (8, 15, 20, and 50 Hz). Filtering of PRA with the 20 Hz cut-off frequency showed the highest correlations between ground reaction force (GRF) and PRA. PRA recorded at the upper back, filtered with a 20 Hz cut-off frequency, appears to provide a good estimate of impact loading for continuous hopping and rebound jumps, but less so for drop landings since correlations between GRF and PRA were only significant when landing from 57.5 cm.  相似文献   

17.
An increase in the period over which a muscle generates force can lead to the generation of greater force and, therefore, for example in jumping, to greater jump height. The aim of this study was to examine the effect of squat depth on maximum vertical jump performance. We hypothesized that jump height would increase with increasing depth of squat due to the greater time available for the generation of muscular force. Ten participants performed jumps from preferred and deep squat positions. A computer model simulated jumps from the different starting postures. The participants showed no difference in jump height in jumps from deep and preferred positions. Simulated jumps produced similar kinematics to the participants' jumps. The optimal squat depth for the simulated jumps was the lowest position the model was able to jump from. Because jumping from a deep squat is rarely practised, it is unlikely that these jumps were optimally coordinated by the participants. Differences in experimental vertical ground reaction force patterns also suggest that jumps from a deep squat are not optimally coordinated. These results suggest there is the potential for athletes to increase jump performance by exploiting a greater range of motion.  相似文献   

18.
The purpose of this study was to investigate the possible arm swing effect on the biomechanical parameters of vertical counter movement jump due to differences of the compliance of the take-off surface. Fifteen elite male beach-volleyball players (26.2 ± 5.9 years; 1.87 ± 0.05 m; 83.4 ± 6.0 kg; mean ± standard deviation, respectively) performed counter movement jumps on sand and on a rigid surface with and without an arm swing. Results showed significant (p < .05) surface effects on the jump height, the ankle joint angle at the lowest height of the body center of mass and the ankle angular velocity. Also, significant arm swing effects were found on jump height, maximum power output, temporal parameters, range of motion and angular velocity of the hip. These findings could be attributed to the instability of the sand, which resulted in reduced peak power output due to the differences of body configuration at the lowest body position and lower limb joints’ range of motion. The combined effect of the backward arm swing and the recoil of the sand that resulted in decreased resistance at ankle plantar flexion should be controlled at the preparation of selected jumping tasks in beach-volleyball.  相似文献   

19.

Purpose: The aim of this study was to ascertain the biomechanical differences between better and poorer performers of the vertical jump in a homogeneous group of children. Method: Twenty-four girls were divided into low-scoring (LOW; M age = 6.3 ± 0.8 years) and high-scoring (HIGH; M age = 6.6 ± 0.8 years) groups based on their performance on the vertical jump. The force-, velocity-, displacement-, and rate of force development (RFD)-time curves of vertical jumps were analyzed to determine the differences between groups. Results: The analysis of the data showed differences in the pattern of the ensemble mean curves of the HIGH and LOW groups, although the majority of the differences occurred during the eccentric contraction phase of the jump. The differences in the HIGH group with respect to the LOW group were: lower force at the beginning of the movement, higher speed and RFD during the eccentric phase, high force at the beginning of the concentric phase, higher velocity during the concentric phase, and a higher position at takeoff. Conclusion: The results showed that the HIGH group achieved a higher jump height than did the LOW group by increasing the effectiveness of the countermovement and achieving a more advantageous position at takeoff.  相似文献   

20.
We investigated the immediate effects of the combined use of inclined and raised flat boards on the take-off motion of the long jump. Eight male long jumpers were videotaped with two high-speed video cameras (250 Hz) set perpendicular to the runway. The athletes jumped with three modified take-off boards: upward-inclined boards of two different inclinations (2.5 and 5.0 degrees), and a raised flat board (50 mm high). The jumpers performed pre- and post-jumps using their own techniques before and after use of the boards to test their effects. The post- jump revealed significantly less reduction in the horizontal velocity during the take-off than the pre-jump, and the effectiveness of converting the velocity from horizontal to vertical increased significantly in the post-jump. The post-jump demonstrated significantly less knee flexion of the take-off leg during take-off. The reduced knee flexion and slower extension velocity of the take-off leg in the second phase of the post-jump contributed to increasing the knee extension torque in the second phase and resulted in the increases in vertical ground reaction force and vertical velocity. These results suggest that the combined use of the inclined and raised flat boards induced immediate effective changes in the kinematics and kinetics of the take-off motion and represent appropriate training tools for take-off techniques of the long jump.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号