首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用典型的二维材料α-MoO_3为前驱物,设计并合成了一种特殊的α-MoO_3层和石墨烯插层复合材料.三明治型的MoO_3/C杂化电极材料具有宽的离子扩散通道,低的电荷迁移电阻和稳定的结构,因此具有优异的储能特性.在1 A·g~(-1)的电流密度下,MoO_3/C复合物的比容量为331 F·g~(-1);10 A·g~(-1)时,比容量保持率达到71%.除此,该材料还具有良好的循环稳定性,在1 000~10 000圈的循环过程中比容量基本无衰减.优异的倍率性能使该电极材料具有高功率密度(12.0 k W·kg~(-1))和能量密度(41.2 Wh·kg~(-1)).  相似文献   

2.
开发了一种选择性去除原位产物,在造孔同时利用反应物中的杂原子实现对碳掺杂的方法,制备了S掺杂多孔炭材料.该材料具有粒子尺寸小、介孔/大孔比例合适、导电性和表面极性大、法拉第反应活性位点多等特点,因此具备在0.5 A·g~(-1)电流密度下具有443 F·g~(-1)高的比容量,以及在20 A·g~(-1)电流密度下和比容量为284 F·g~(-1)时的良好倍率性能.  相似文献   

3.
MnO负极材料由于其比容量高、资源丰富、成本低而备受关注.然而,在脱锂/嵌锂过程中,体积变化大(170%)仍然是MnO材料面临的严重问题,导致其倍率性能差,容量衰减快.在碳纳米纤维(CNF)网络中生长均匀的MnO晶体,CNF的束缚作用可以有效地减小MnO在循环过程中的体积变化.本文设计并合成了CNF/MnO柔性锂离子电池电极,碳纳米纤维在锂离子脱出/嵌入过程中发挥导电通道的作用,并且弹性束缚MnO纳米颗粒.当电流密度为0.2 A·g~(-1)和1 A·g~(-1)时,CNF/MnO作为无粘合剂的负极,在第100次循环后比容量分别保持在983.8 mAh·g~(-1)和600 mAh·g~(-1),远高于纯MnO和纯CNF负极.该工作为高可逆锂储存装置中具有潜在应用价值的CNF/MnO新型柔性无粘合剂负极提供了一种简便且可扩展的合成方法.  相似文献   

4.
以氧化石墨烯修饰的铁基普鲁士蓝类似物(PBA)为前驱体,低温硒化制备出石墨烯(G)和氮掺杂碳(NC)共包覆FeSe2纳米颗粒复合材料(FeSe_2/NC@G).所得到的FeSe2/NC@G具有良好的储钠性能,在5.0 A·g~(-1)时,其可逆容量为331 mAh·g~(-1).在2.0 A·g~(-1)条件下循环1 000圈后,可逆容量仍有323 mAh·g~(-1)(容量保持率为82%).此外,钠离子全电池也显示了优越的倍率性能和循环稳定性.本工作为新型纳米结构TMSs的合成在储能系统中的应用提供了一定的实验基础.  相似文献   

5.
采用固相反应法制备碳包覆的磷酸钒锂材料,研究不同的柠檬酸添加量以及一次球磨前后加入顺序对磷酸钒锂性能的影响.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、电池测试仪、电化学工作站等测试方法对Li_3V_2(PO4)_3/C复合正极材料的晶体结构、形貌特征、电化学性能、动力学性能做了分析.结果表明:柠檬酸的添加量以及柠檬酸加入顺序对磷酸钒锂复合材料的电化学性能有明显的影响.当一次球磨之前添加柠檬酸且其量与钒的摩尔比为1时得到的磷酸钒锂复合材料具有最佳的性能,电化学性能测试显示,在电压3.0~4.3 V范围内0.5 C倍率时,放电比容量达到128 mAh·g~(-1)(理论比容量为133 mAh·g~(-1)),并且当倍率达到10 C时,放电比容量仍有105 mAh·g~(-1),甚至当倍率达到20 C时,放电比容量仍高达95 mAh·g~(-1),循环伏安法和交流阻抗分析显示出有较好的离子扩散率和较小的阻抗.  相似文献   

6.
通过一步水热法合成了Fe_2O_3/GO复合材料,得到的氧化铁能很好地与石墨烯复合在一起,并且具有比同方法得到的纯Fe_2O_3更小的颗粒直径.Fe_2O_3/GO复合材料表现出了很好的电化学性能,在1.0 A·g~(-1)的电流密度下能够释放出高达726/715 mAh·g~(-1)的放/充容量,其循环稳定性也得到大大提高.石墨烯的有效复合不仅为电极材料提供了高的导电性,而且有效缓解反复充放电过程中体积效应带来的应力集中,防止材料粉化脱落,从微观结构的改进中有效提升了材料的宏观电化学性能.  相似文献   

7.
本文采用水热法制备CoMoO_4作为超级电容器电极材料,研究了CoMoO_4电极材料的形貌和电化学性能.结果显示,350℃退火样品SEM图显示CoMoO_4样品为纳米棒;CoMoO_4材料在1 A·g(-1)的电流密度下比容量为155 F·g(-1)的电流密度下比容量为155 F·g(-1),并在渐变的电流密度下连续充放电循环1 600次后电容量衰减了9.8%.结论:CoMoO_4材料具有良好的电化学性能.  相似文献   

8.
通过在CdS纳米棒的表面负载Au和S合成了一种新型的三元S/CdS-Au复合物.在可见光条件下(λ420 nm),S/CdS-Au显示出了优异的光催化产氢活性(4.38 mmol·g~(-1)·h~(-1)),高于CdS-Au (2.56 mmol·g~(-1)·h~(-1))和S/CdS(1.86 mmol·g~(-1)·h~(-1)).光电流和电化学阻抗谱证明,在Au和S的协同作用下,CdS的光生电子得到有效分离并提高了S/CdS-Au的产氢活性. S/CdS-Au是一种高效、稳定用于分解水产氢的复合光催化剂.  相似文献   

9.
设计并合成了一种新型的核-壳结构材料磷酸钴锂异质层包覆镍锰酸锂.橄榄石型的磷酸钴锂纳米颗粒均匀地生长于尖晶石型镍锰酸锂表面,磷酸钴锂包覆层不仅能够有效地诱导镍锰酸锂表面产生微量Mn~(3+),同时还能够减缓Mn~(3+)的歧化反应并阻止锰的溶出.NM-CP5样品具有最佳的电化学性能,在0.5 C的放电倍率下,容量可达137 mAh·g~(-1),充放电100次后容量仍保持132 mAh·g~(-1)(容量保持率达98.5%).  相似文献   

10.
通过微波水热法以及低温熔融盐浸渍法合成了一种含Zn表面异质层改性的富锂正极材料Li1.2Mn0.56Ni0.16Co0.08O2(Zn-LLO).XRD表明没有杂质相的掺入,且合成的材料结晶性十分优异;在扫描电镜和透射电镜下呈现出200 nm左右的二级颗粒组成的球状一级结构;在XPS中可以看出掺入的Zn是存在的,证明了Zn表面异质层的存在.得益于微波水热法,合成的材料结晶性较好,具有较好的性能,同时得益于低温熔融盐浸渍法不破坏材料的结构又形成了Zn表面异质层,Zn-LLO展现出极其优异的电化学性能.在100 mA·g-1下经过100圈的循环,Zn-LLO有209.4 mAh·g-1的超高容量,并且在20,100,200,400,1000和2000 mA·g-1下分别有276.8,236.1,204.4,171.1,127.8和95.1 mAh·g-1的优异的平均容量.经过分析,这主要是由于Zn表面异质层对材料的保护作用,LLO与电解液减少接触使得LLO在循环过程中不容易被电解液腐蚀分解,电化学性能从而更加优异且稳定.  相似文献   

11.
V2O5被认为是一种有潜力成为商业锂离子电池电极的材料.本文合成了一种原位聚苯胺(PANI)插层V2O5复合材料以增强锂离子在材料中的脱/嵌能力.该复合材料V-O层的层间距显著增大(13.34?),为Li+的快速扩散提供了通道.同时,PANI本身的高导电性,提高了V2O5/PANI复合材料的电子电导率,V2O5/PANI复合材料的储锂性能也得到改善.在1 A·g-1的电流密度下循环450圈,V2O5/PANI的比容量达到760.1 mAh·g-1.此外,该复合材料展现出高赝电容行为,具有较好的高倍率性能,在10 A·g-1的高电流密度下循环1600圈,依旧有261.0 mAh·g-1可逆比容量.  相似文献   

12.
以共沉淀氢氧化物Ni1/3Co1/3Mn1/3(OH)2和LiOH·H2O为原料,研究了其恒电流充放电测试显示,在2.8~4.4V电压区间,流变相反应法合成的材料首次放电比容量高(达到170mAh/g),循环性能好.充放电循环40次后,放电比容量为145mAh/g,容量保持率达85.3%.循环伏安实验表明,材料的结构在循环过程中保持稳定.  相似文献   

13.
以共沉淀氢氧化物Ni1/3Co1/3Mn1/3(OH)2和LiOH·H2O为原料,研究了其恒电流充放电测试显示,在2.8~4.4 V电压区间,流变相反应法合成的材料首次放电比容量高(达到170 mAh/g),循环性能好.充放电循环40次后,放电比容量为145 mAh/g,容量保持率达85.3%.循环伏安实验表明,材料的结构在循环过程中保持稳定.  相似文献   

14.
目的:为提高锂离子电池循环稳定性和倍率性能,制备具有高容量、长寿命、强导电性的负极材料.方法:Hummers法制备氧化石墨烯(GO)作为复合材料的基底物质,水热法有效合成ZnSe/rGO复合电极材料.在硒化锌高的理论容量和石墨烯强的电子导电性的协同作用下,使合成的复合材料获得优异的锂离子电池性能.结果:将ZnSe/rGO复合物作为锂电负极材料进行性能测试,相较于纯ZnSe材料,不仅具有稳定循环性能(0.5 A/g电流密度下,循环200圈容量每圈仅衰减0.097%),还具有优异的倍率性能(高达10 A/g电流密度下,容量依然保持322 mAh/g).结论:ZnSe/rGO复合电极材料由于其独特的表面结构和增强的电导性,可以有效提高锂离子电池整体电化学性能.  相似文献   

15.
采用共沉淀制备前驱体,微波高温固相烧结制备富锂正极材料0.5Li2Mn O3·0.5Li Ni1/3Co1/3Mn1/3O2.通过X射线衍射(XRD)、电镜扫描SEM、循环伏安(CV)、充放电性能等材料结构的表征和电化学性能测试,研究了不同烧结时间(微波3 min、5 min、7 min、15 min)对材料结构电化学性能的影响.发现较佳的合成条件所合成的富锂正极材料0.5Li2Mn O3·0.5 Li Ni1/3Co1/3Mn1/3O2结构是α-Na Fe O2型,为二维层状结构.在2.0~4.8 V的截止电压范围、17 m Ah·g-1的电流密度,首次放电容量为284.6 m Ah·g-1,20个循环容量的保有率为75.6%.通过微波高温烧结合成正极材料,研究了制备工艺对材料结构和电化学性能的影响,并探讨了该体系的应用前景.  相似文献   

16.
通过简单的水热法合成水锌矿(Zn5(CO3)2(OH)6)纳米片,并对其电化学性能进行研究.作为负极材料,水锌矿纳米片首圈放电容量虽然可以达到1 500mAh·g-1,但容量随着循环圈数的增加而不断衰减.为此,我们采用石墨烯复合的方法来提高水锌矿的循环容量.石墨烯的存在可以有效提高水锌矿的导电性,加快电荷转移,同时也可以缓解电极材料在循环过程中发生大的体积变化,提高循环稳定性.  相似文献   

17.
《商洛学院学报》2017,(4):28-32
采用微孔纳米碳球为硬模板,KMn O4为锰源,制备了具有核壳结构的纳米复合材料C@MnO_2。首先以八苯基倍半硅氧烷为前驱体制得微孔含硅碳球xph-C-Si,除硅后得到微孔碳球xph-C。其次将所得微孔碳球xph-C在0.5 mol·L(-1)KMnO4溶液中进行氧化锰壳层包覆反应,最终制得C@MnO_2复合材料。该复合材料为球形颗粒,尺寸约为200 nm左右。材料具有良好的分散性,其内部呈现出有序的微孔结构。采用三电极体系,在1 mol·L(-1)KMnO4溶液中进行氧化锰壳层包覆反应,最终制得C@MnO_2复合材料。该复合材料为球形颗粒,尺寸约为200 nm左右。材料具有良好的分散性,其内部呈现出有序的微孔结构。采用三电极体系,在1 mol·L(-1)硫酸钠电解液中对C@MnO_2电极材料进行循环伏安测试,该材料表现出较高的比电容值,在5 m V·s(-1)硫酸钠电解液中对C@MnO_2电极材料进行循环伏安测试,该材料表现出较高的比电容值,在5 m V·s(-1)的扫速下,C@MnO_2电极材料的电容值为286 F·g(-1)的扫速下,C@MnO_2电极材料的电容值为286 F·g(-1)。  相似文献   

18.
以硝酸和高氯酸对样品进行湿法消解,采用火焰原子吸收分光光度法测定几种常见梨中Mg、Fe、K、Na、Zn、Cu、Mn七种微量元素的含量.结果表明,香梨中的Cu含量最高,含量为0. 907 7 ug·g~(-1);水晶贡梨中的Na、Mn含量最高,其中Na含量为70. 618 6 ug·g~(-1),Mn含量为0. 703 1 ug·g~(-1);雪梨中的Zn、Mg含量最高,其中Zn含量为9.753 5 ug·g~(-1),Mg含量为9. 173 2 ug·g~(-1);皇冠梨中的Fe、K含量最高,其中Fe含量为17. 052 1 ug·g~(-1),K含量为957.453 9 ug·g~(-1).各种梨中Na、K含量均比较高,其中K含量最高.  相似文献   

19.
富锂锰基层状氧化物正极材料具有容量高、理论能量密度高和价格低等优点引起了研究者关注,有望成为下一代高比能量电池的优选材料.但该材料循环过程中存在严重的电压和容量衰减问题,限制其商业应用.本文首先总结了引起电压和容量衰减的主要原因:(1)材料自身结构的转化;(2)金属阳离子的不可逆迁移;(3)循环过程中产生电压滞后现象;(4)循环后形成SEI膜.其次归纳了3条有效改进措施:表面包覆、离子掺杂和改进电解液添加剂.最后基于作者的实验结果对该材料的发展进行展望,指出注重电池中各组成部分的协同作用有利于加快富锂锰基正极材料的商业化使用.  相似文献   

20.
以废旧手机锂电池为前驱体回收负极石墨粉,再利用负极石墨粉制备的氧化石墨为原料,在不同温度条件下,采用高温热膨胀法制备了一系列膨胀石墨,并利用热重分析仪(TG)、扫描电镜(SEM)和恒电流充放电等对其进行了结构表征和电化学性能测试.实验测试结果表明:该类膨胀石墨最佳热膨胀制备温度为630℃;在电流密度0.5 A·g~(-1)时,膨胀石墨EG-630比电容量高达242 F·g~(-1);恒电流充放电循环1 000圈后,比电容保持率为101%,表现出良好的电化学性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号