首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本刊今年第6期《从方程x+1/x=c+1/c的解法谈起》一文中,将初中《代数》课本第三册中的一道练习题“解关于x的方程x+1/x=c+1/c”作了两次推广: 推广一:关于x的方程x+b/x=c+b/c的解为x_1=c,x_2=b/c(c≠0)。 推广二:关于x的方程x~(1/n)+1/(x~(1/n))=c+1/c的解为x_1=c~n,x_2:=1/(c~n)。  相似文献   

2.
由义务教育初中《代数》第三册51页B组第1题(1):解关于x的方程x+1/x=c+1/c,得方程的两根是x_1=c,x_2=1/c。 易将此习题推广为如下规律:x±m/x=c±m/c(m≠0)的两根为x_1=c,x_2=±m/c。 利用此规律的关键是识别与构造方程成为“x±m/x=c±m/c(m≠0)”的形式。 当方程较复杂时,直接使用此规律比用换元法快,现举例如下:  相似文献   

3.
初中代数第三册P_(126)练习中有这样一题:解方程x 1/x=c 1/c。解:去分母,整理得x~2-(c 1/c)x 1=0,解之得x_1=c,x_2=1/c。经检验,x_1=c,x_2=1/c均是原方程的根。由此得,形如x 1/x=c 1/c的两根互为倒数,且x_1=c,x_2=  相似文献   

4.
设方程 ax~2+bx+c=0(a≠0)的两根为 x_1,x_2,那么 x_1+x_2=-(b/a),x_1·x_2=(c/a).这就是一元二次方程根与系数的关系.由根与系数的关系,我们知道:以两个数 x_1,x_2为根的一元二次方程(二次项系数为1)是x~2-(x_1+x_2)x+x_1·x_2=0.根与系数的关系使我们能够由方程来讨论根的性质;反之,则可以由根的性质来确定方程的系数.因而,根与系数的关系的应用相当广泛.我  相似文献   

5.
初中《代数》第三册126页有这样一个方程:x 1/x=c 1/c(一般称为倒数方程),它的根是x_1=c,x_2=1/c 若将此方程及其根加以推广,则有方程 x b/x=c b/c的根是x_1=c,X_2=b/c (解略) 应用上述两个结论解某些方程或方程组是非常简捷的,下面以初中《代数》第三册中的例题和习题为例来说明,以供读者参考。  相似文献   

6.
如何解可化为一元二次方程的分式方程x (1/x)=c (1/c)(见部编初中代数课本第三册117页)?显然若t是这个方程的一个根,则1/t是这方程的另一个根。用观察法我们立即可找出这方程的一个根x_1=c,故这方程的另一个根为x_2=1(1/c)。以上这种解法比将分式方程化为整式方程后再求根要简便得多。应用这道题的结论,可以简化课本中许多习题的解题过程。  相似文献   

7.
解方程:x (1/x)=c (1/c). (*) 这是初中代数第三册(51页)的一道普通习题,易解得x_1=c,x_2=1/c.对此方程可作如下变式训练。  相似文献   

8.
西南师范大学出版社出版的初中数学试验教材(内地版)代版第二册P、136、1(3)题和实验课本高层次代数第2册P、108、3题都是关于x的方程:x 1/x=a 1/a,这个题目非常好。好在它的构造是倒数型、对称型,所以形式简洁美丽,好在它的解也对称、简明、易记,更好在能推广灵活运用也同样有对称美、简洁美。命题一方程:x 1/x=c 1/c(?)x_1=c,x_2=1/c(证略) 如果将未知数x换为x的函数f(x),则有: 命题二方程f(x) 1(f(x))=c 1/c(?)f(x)=c,f(x)=1/c,(其中x为未知数,f(x)为x的函数) 证明:∵f(x)≠0,c≠0。  相似文献   

9.
如何解可化为一元二次方程的方程x+(1/x)=c+(1/c)(关于x的方程,c≠0)?按照通常的解法,是将分式方程化为整式方程,即cx~2-(c~2+1)x+c=0,解关于x的一元二次方程得x_1=c,x_2=(1/c)经检验知x_1=c,x_2=(1/c)是原方程的解。笔者认为,倘若应用该题的结论,便可简化许多有关习题的解题过程。现举例如下:例1 解关于x的方程x+(1/(x-1))=a+(1/(a-1))。解:将原方程变形为  相似文献   

10.
实系数一元二次方程ax~2+bx+c=0(a≠0)有性质: (1)若a+b+c=0,则方程的两根为x_1=1,x_2=c/a;反之,若一根为1,则a+b+c=0。  相似文献   

11.
设一元二次方程ax2+bx+c=0的两根是x1、x2,要求不解方程,我们能够熟练地求出关于x1、x2的对称代数式(如x_1~2+x_2~2、x_1~3+x_2~3、1/x1+1/x2、(x1-x2)2、|x1-x2|等)的值.对含x1、x2的非对称代数式的值的求法,现举例介绍三种转化的方法:例设x1、x2中二次方程x2+x-3=0的两个根,那么x_1~3-4x_2~2+19的值是( )(1996年全国初中数学联赛)(A)- 4.(B)8.(C)6.(D)0.解法1:(配偶转化法):设A=x_1~3-4x_1~2+19,B=x_2~3-4x_1~2+19.∵x1、x2是方程x2+x-3=0的两根,∴x1+x2=-1,x1·x2=-3.  相似文献   

12.
题目 解方程:x (1/x)=c (1/c).(c≠0) (1) 这是一种具有倒数关系的方程. 按照解分式方程的一般步骤,最后解得此方程的根为x_1=c,x_2=1/c.其实,这个方程左、右两边分别是一对互为倒数的代数式之和,经观察可直接得到结果x=c或x=1/c.  相似文献   

13.
贵刊1994年第一期发表的“一类方程的巧解”一文,应用关于 x 的方程 x (1/x)=c (1/c)的解是 x_1=c,x_2=(1/c)这一结论巧妙的解出了初中教材中的一些习题.在该文的启发下,笔者发现:关于 x 的方程 x (α/x)=c (α/c)的解是 x_1=c,x_2=(α/c).应用这一结论可以进一步巧解教材和初中数学资料中的很多方程.以下举例说明之.  相似文献   

14.
设一元二次方程ax~2+bx+c=0(a≠0)有二实根x_1,x_2,易知有如下两条性质: 性质1.若a+b+c=0,则x_1=1,x_2=c/a;反之,若x_1=1,x_2=c/a,则a+b+c=0.  相似文献   

15.
<正>焦半径公式:已知F1,F2是椭圆x2/a2/a2+y2+y2/b2/b2=1(a>b>0)的左、右焦点,P(x_0,y_0)是椭圆上一点,则|PF_1|=a+ex_0,|PF_2|=a-ex_0。证明:椭圆的左准线方程为x=-a2=1(a>b>0)的左、右焦点,P(x_0,y_0)是椭圆上一点,则|PF_1|=a+ex_0,|PF_2|=a-ex_0。证明:椭圆的左准线方程为x=-a2/c。由椭圆的第二定义,得|PF_1|/(x_0+a2/c。由椭圆的第二定义,得|PF_1|/(x_0+a2/c)=c/a,即  相似文献   

16.
二次函数的一般形式是:y=ax~2+bx+c(a≠0),经配方,得y=a(x+(b/2a))~2+(4ac-b~2)/4a,设b/2a=m,(4ac-b~2)/4a=k 变式一:y=a(x+m)~2+k(a≠0) 二次函数图象的顶点坐标是(-m,k),对称轴方程是x=-m,即当x=-m时,函数y取得最大值(a>0)或最小值(a<0),“最”值是k。 若抛物线y=ax~2+bx+c(a≠0)与x轴有交点(x_1,0)、(x_2,0)(x_1=x_2时相切),即方  相似文献   

17.
初三代数教材对一元二次方程根与系数关系叙述为:如果ax~2+bsr+c=0(a≠0)的两个根是x_1、x_2,那么x_1+x_2=-b/a,x_1·x_2=c/a。此定理对结论成立的先决条件交代很清楚,即“原方程存在两个根x_1和x_2”。但在教学过程中,我发现有些学生在运用这一关系时却只记住了结果,忽视了条件,因粗心大意导致解题错误。 错例1.判断正误:方程ax~2+bx+c=(a≠0)两根之和为-b/a。( ) 错误判断为“对”。 错例2.若方程x~2+(m~2-1)x+1+m=0的两根互为相反数,则m的值为( ) (A)1或-1; (B)1; (C)-1; (D)0。 错选(A)。  相似文献   

18.
<正>一、教学节录1.在问题求解中培养思维能力。师:请大家证明下列例题:已知圆C的方程是x2+y2+y2=r2=r2,求证:经过圆C上一点M(x_0,y_0)的切线方程是x_0x+y_0y=r2,求证:经过圆C上一点M(x_0,y_0)的切线方程是x_0x+y_0y=r2。(苏教版高中数学必修2第117页习题第11题)(给学生思考的时间,先由学生独立思考,  相似文献   

19.
一、三次函数的图象及其性质对于三次函数 y=f(x)=ax~3+bx~2+cx+d(a≠0),我们有 y′=f′(x)=3ax~2+2bx+c.设导函数 y′=f′(x)的判别式为△=4b~2-12ac=4(b~2-3ac).(1)当 a>0时,(i)若△>0,则方程 f′(x)=0有两个不等的实根。设两实根为 x_1,x_2(x_10、f(x_2)<0)时,图象与 x 轴有三个不同的  相似文献   

20.
<正>命题1函数f(x)=ax+b(a≠0)满足:f(x_1)f(x_2)<0,则■x_0∈(x_1,x_2),有f(x_0)=0.证明:函数f(x)=ax+b的零点即方程ax+b=0的根,b由a≠0知方程ax+b=0有实数根x_0=-a/b,即f(x_0)=0,所以只需证x_0=-∈(x,由f(x_1)f(x_2)<0得(ax_1+b)(ax_2+b)<0即:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号