首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
<正>近年来,解析几何中关于椭圆共轭直径的问题成为高考和数学竞赛的热点内容.笔者对这类问题进行了系统的研究,概括得到用途广泛的三个新命题,现整理成文与大家交流.为了方便大家学习研究,我们先来介绍椭圆共轭直径相关的定义.定义1连接椭圆上任意两点的线段叫做弦.定义2经过椭圆中心的弦叫做椭圆的直径.定义3过平行于椭圆一条直径的弦的中点的直线和该直径叫做椭圆的一对共轭直径.  相似文献   

2.
正在解析几何中有如下的定义:定义1[1]二次曲线平行弦中点的轨迹叫做这个二次曲线的直径,它所对应的平行弦,叫做共轭于这条直径的共轭弦,而直径叫做共轭于平行弦的直径.由此,我们便容易得出椭圆共轭直径的如下定义:定义2如图1,椭圆中平行于直径CD的弦的中点的轨迹AB和直径CD叫做互为  相似文献   

3.
二次曲线的仿射性质探讨   总被引:2,自引:1,他引:2  
通过实例,由定义和定理,解得了抛物线的任意一组平行弦中点共线;平行于一对共轭直径的椭圆外切平行四边形面积为常量;椭圆的二共轭半径之平方和为定值;双曲线上任一点引两直线各平行于渐近线,这二线和渐近线构成的平行四边形面积一定;双曲线的弦的中点的轨迹在平行于另一渐近线的直线上;通过有心二次曲线一点的直径的共轭直径平行于该点的极线及平分弦的问题.  相似文献   

4.
连接椭圆(或双曲线)上任意两点的线段叫弦,过椭圆(或双曲线)中心的弦叫直径,平行于该直径的弦的中点的轨迹和该直径叫椭圆(或双曲线)的互为共轭直径,对此进行探讨,可以得到重要的性质。  相似文献   

5.
在中学解析几何中,大家知道有心圆锥曲线的平行弦中点的轨迹是过中心的一条直线(其实是线段或射线),这条直线称为这有心圆锥曲线的一条直径,如图1,在椭圆中,与弦CD平行的弦的中点的轨迹是过中心O的直径A'B';平行于A'B'的弦EF的中点的轨迹是过中心O的直径AB,不难证明A'B'∥EF,AB∥CD。称AB和A'B'是椭圆的一对共轭直径。  相似文献   

6.
正文[1]最后提出了一个猜想:若A,B分别是椭圆x2/a2+y2/b2=1(ab0)一直径的两端,P为椭圆上的任意一点(不与A,B重合).直线PA,PB与AB的共轭直径所在直线分别交于C、D,则椭圆在点P处的切线平分线段CD.首先给出共轭直径的定义:定义一椭圆(双曲线),其中心为O,过O任作一直径AB,再作AB的平行弦EF,取EF的中点M,连接OM得椭圆(双曲线)的另一直径CD,则AB、CD称为椭圆(双曲线)的一对  相似文献   

7.
定义:连结椭圆上任意两点的线段叫弦.过椭圆中心的弦叫直径.类似地可定义双曲线的直径.如图1,平行于直径CD的弦的中点的轨迹AB和直径CD叫互为共轭直径.类似地可定义双曲线的共轭直径. 定理1 已知AB、CD为椭圆x~2/a~2 y~2/b~2=1的一对共轭直径,其斜率分别为k_(AB)、K_(CD),那么K_(AB)·K_(CD)=-b~2/a~2. 略证:如图1,设平行弦EF簇的斜率为k(即K_(CD)),则平行弦EF簇的方程为 y=kx t(t为参数).① 又椭圆方程为 x~2/a~2 y~2/b~2=1. ② ①代入②整理得 (a~2k~2 b~2)x~2 2a~2tkx a~2(t~2-b~2)=0. ③ 由韦达定理,得x_1 x_2=-(2a~2tk/a~2k~2 b~2). 设M(x′,y′)是EF的中点,则 x′=1/2(x_1 x_2)=-(a~2tk/a~2k~2 b~2) ④ 点M在EF上,则y′=kx′ t. ⑤ 由④、⑤消去参数t得 y′=-b~2/a~2k x′. ∵k_(AB)=k_(OM)=-(b~2/a~2k). ∴k_(AB)·k_(CD)=-(b~2/a~2k)·k=-(b~2/a~2). 推论1 AB是椭圆x~2/a~2 y~2/b~2=1的任意一条弦,P为AB的中点,O为椭圆的中心,则 K_(AB)·K_(OP)=-(b~2/a~2).  相似文献   

8.
在画法几何里,我们已学会了用同心圆法、四圆心法、八点法、平行弦法等方法画椭圆,这些方法各有优劣,但都没能解决这样一个基本问题,即:已知椭圆的共轭直径,怎样画出它的长、短轴.众所周知,椭圆的长短轴是确定椭圆大小形状的关键参数;因此,解决这一问题对画法几何理论的应用是有着广泛的实际意义的.下面就试用射影几何理论阐述解决这一问题的方法,并介绍一种面椭圆的新技法.  相似文献   

9.
尹建堂  彭跃丽 《考试》2003,(10):17-19
一、直径与直径方程圆锥曲线的平行弦的中点轨迹叫做圆锥曲线的直径,根据该定义不难推得圆锥曲线F(x,y)=0中平分斜率为k的弦的直径方程:曲线方程相应的直径方程  相似文献   

10.
椭圆是圆锥曲线中的重要内容,也是高考命题的热点、椭圆的定义是研究椭圆的基础,也是解椭圆题的一把金钥题.椭圆给出了2种定义:第一定义:平面内与2个定点F1、F2的距离之和等于常数2a(2a>|F1、F2|)的点的轨迹叫做椭圆;第二定义:到一个焦点和相应准线的距离比是常数e(0相似文献   

11.
文[1]到研究了椭圆的内接、外切平行四边形面积的最值问题,得到了下面的两个结论: 结论1 椭圆的内接平行四边形中,当对角线是一对共轭直径时,面积最大. 结论2 椭圆的外切平行四边形中,当对边切点的连线是椭圆的一对共轭直径时,面积最小. 在此,笔者提出以下两个问题: 1.上述结论之逆命题,是否成立? 2.对任意四边形,是否仍有此结论? 本文将给出肯定的回答(即定理1、2),为此要用到下面的引理. 引理1 圆柱的斜截面是椭圆,且它的  相似文献   

12.
《辞海》修订本理科分册(上)第32页,在直径的定义中说“双曲线的直径是过中心的直线”。《中学数学辞典》(胡家齐、武自顺编,陕西科技出版社1982年版)第183页,对于双曲线的直径方程和共轭直径方程作如下论述,双曲线方程:x~2/a~2-y~2/b~2=1,直径方程:b~2x-a~2ky=0,共轭直径方程:y=kx。一般而言,以上论述都是错误的,我们知道圆锥曲线的一族平行弦的中点轨迹称为圆锥曲线的“直径”。又在双曲线中,若一条直径平分平行于另一条直径的弦,则这两条直径称为双曲线的“共轭直径”。  相似文献   

13.
三、圆锥曲线的焦点弦问题过焦点的直线与圆锥曲线相交,两个交点的线段叫焦点弦,与焦点弦有关的圆锥曲线问题常用定义(特别是第二定义中的焦半径公式)把问题转化.1.如果弦MN过椭圆的焦点F1,设M(x1,y1),N(x2,y2),则|MN|=a ex1 a ex2=2a e(x1 x2).【例6】设椭圆方程为ax22 by22=1  相似文献   

14.
定义经过圆锥曲线顶点且被圆锥曲线截得的弦叫做圆锥曲线顶点弦.圆锥曲线焦点弦长问题一直是中学数学研究的热点,而对于圆锥曲线顶点弦问题的研究并不多见,为此,本文讨论圆锥曲线顶点弦长度的计算方法.经过对圆锥曲线顶点弦长度的分析和研究,得到如下的统一公式.  相似文献   

15.
定义圆锥曲线准线与其对称轴的交点叫做准点,经过准点的直线被圆锥曲线截得的弦叫做准点弦.  相似文献   

16.
近年来,已知椭圆的焦点弦所在直线的倾斜角为θ,求与椭圆的焦半径、焦点弦长有关的问题,频频出现于高考试卷及各类模拟试题.对这类问题的处理,传统的思路是借助于椭圆的第二定义或极坐标方程.而现行新课标教材中又没有详细介绍椭圆的第二定义和极坐标方程,所以不少资料给出的解法是联立直线与椭圆的方程,  相似文献   

17.
在椭圆中,我们通常把焦点与过另一个焦点的弦所围成的三角形叫做焦点三角形,类似地,我们也把顶点与过另一个顶点所对应的焦点弦围成的三角形叫顶焦点三角形.在椭圆的顶焦点三角形中有许多与椭圆焦点三角形相类似的几何特  相似文献   

18.
文 [1]中给出了关于椭圆的一个命题 ,由此想到对于双曲线命题是否成立 ?而文 [1]中的证明方法很难推广到双曲线 ,那么 ,是否能找到既适合椭圆又适合双曲线的一种证明方法呢 ?本文就此回答了这个问题 .首先说明圆锥曲线弦的概念 ,若直线与圆锥曲线交于两点 ,则两点间的线段叫做圆锥曲线的弦 .命题 1 若椭圆 x2a2 + y2b2 =1的两条弦相交且互相平分 ,则交点为原点 ,即椭圆的对称中心 .证明 若AB、CD为椭圆x2a2 + y2b2 =1的两条互相平分的相交弦 ,当有一条弦所在直线为x轴或y轴时 ,命题显然成立 ;当有一条弦与x轴平行 ,或与 y…  相似文献   

19.
一个顶点在椭圆(双曲线)上,另两个顶点为椭圆(双曲线)焦点的三角形叫椭圆(双曲线)的焦点三角形.与焦点三角形有关的问题可以综合地考查三角形中的正(余)弦定理、内角和定理、面积公式及圆锥曲线的定义和标准方程等知识,因此很有必要对椭圆(双曲线)的焦点三角形进行系统地研究.  相似文献   

20.
<正>本文就椭圆中是否存在一般性"对偶元素"和证明"椭圆幂定理"作一探究.为行文方便,现给出一般性"对偶元素"的定义如下:在椭圆中,点O1是椭圆直径Q1Q2所确定直线上任意一点(除原点外),若直线l与直径Q1Q2的共轭直径P1P2平行,点O1与直线l在椭圆中心的同侧,记点O1到椭圆中心的距离为d1,记直线l与直线Q1Q2的交点T到椭圆中心的距离为d2,且d1与d2的乘积为直径Q1Q2一半长的平方,则称点O1与  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号