首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正在高中数学新课标选修44中,介绍了平面直角坐标系中的坐标伸缩变换.若在坐标伸缩变换下,椭圆就可以变为圆,二者有很多相似的性质,从而可将椭圆的有些问题用圆的知识来处理,比如研究直线和椭圆、椭圆和椭圆的位置关系、与椭圆有关的问题时,用坐标伸缩变换转化为相应的直线和圆、圆和圆的位置关系、与圆有关的问题来处理.这样做不仅可以方便理解,还可以避免较为繁琐的计算过程.下  相似文献   

2.
在高中数学新课标选修4—4中,介绍了平面直角坐标系中的坐标伸缩变换.在坐标伸缩变换下,椭圆就可以变为圆,二者有很多相似的性质,从而可将椭圆的有些问题用圆的知识来处理,比如研究直线和椭圆、椭圆和椭圆的位置关系、与椭圆有关的问题时,用坐标伸缩变换转化为相应的直线和圆、圆和圆的位置关系、与圆有关的问题来处理.这样做不仅可以方便理解,还可以避免较为繁琐的计算过程.下面分类举例予以说明.  相似文献   

3.
在高中数学新课标选修4-4中,介绍了平面直角坐标系中的坐标伸缩变换.若在坐标伸缩变换下,椭圆就可以变为圆,二者有很多相似的性质,从而可将椭圆的有些问题用圆的知识来处理,比如研究直线和椭圆、椭圆和椭圆的位置关系、与椭圆有关的问题时,用坐标伸缩变换转化为相应的直线和圆、圆和圆的位置关系、与圆有关的问题来处理.这样做不仅可以方便理解,还可以避免较为繁琐的计算过程.下面分类举例予以说明.  相似文献   

4.
通过伸缩变换将椭圆转化为单位圆,把直线与椭圆的位置关系转化为直线与圆的位置关系,借助圆丰富的几何性质来避开繁琐的代数运算,简化解题过程,从而实现椭圆问题圆解决.  相似文献   

5.
大家知道,直线与圆的位置关系判断既可以用代数方法(即联立两曲线方程,通过判别式来断定其位置关系),也可以用几何方法(即通过比较圆心到直线的距离与圆半径的大小来判断位置关系)。而直线与椭圆的位置关系则通常只用代数方法来判断,能否用几何方法判断。下面我们通过“点变换”将椭圆变为圆后,寻求直线与椭圆的位置关系的几何判断方法。  相似文献   

6.
椭圆与圆可以通过伸缩变换而互相转换,探讨了利用椭圆与圆之间的伸缩变换关系,解决与椭圆有关的几何问题具有很大的简便性。  相似文献   

7.
运用伸缩变换,可以将椭圆问题转化为圆问题. 例如图1,椭圆方程为x2/16 y2/25=1,点P坐标(0,3),过点P作直线AB、CD,分别交椭圆于A、B、C、D,AD中点为M,已知kAB·kCD=-25/16,求M点的轨迹方程. 你可以用常规解法试一下,会发现解题过程很烦琐.这里我给你介绍一个小技巧,对题中椭圆进行伸缩变换,把椭圆转换成圆,解法就变简单多了.具体解法如下: 令x=4/(?)x0,y=y0,  相似文献   

8.
讨论直线和椭圆位置关系利用传统的"代数法"计算繁杂.课堂上,一道课本例题探究了椭圆和圆的关系,进而得出将椭圆进行伸缩变换可得到圆,由此引发学生思考,层层深入进行探究,得到了讨论直线和椭圆位置关系的一种新方法——"几何法",前后知识联系,记忆方便,运用简单.  相似文献   

9.
我们知道,针对圆的特殊几何性质,可以用圆心到直线的距离与圆的半径的大小关系来判定直线和圆的位置关系. 实际上,结合椭圆和双曲线的第一定义,直线和椭圆、双曲线的位置关系的判定也有类似的结论.  相似文献   

10.
在图形变化中有一种伸缩变换,它不但会改变有关点的坐标、曲线的方程,而且还会使一些几何特征量有所改变.但伸缩变换也有它自身的特点,若能抓住不变量和变换规律,能使一些问题的难度降低.本文着重探讨利用椭圆和圆之间的伸缩变换关系解决与椭圆有关的问题.  相似文献   

11.
新教材明确指出 :将圆按照某个方向均匀压缩 (拉长 )可以得到椭圆因此椭圆与圆之间 ,可以通过伸缩变换转化 .三角函数图象变换中的周期变换和振幅变换实际上就是图象沿x轴和y轴方向上的伸缩变换 .由于我们对圆的性质相对于椭圆来说要熟悉得多 ,因此解决椭圆问题时 ,有时可化为圆来解决 ,只要利用伸缩变换即可 .例 1 求椭圆 x2a2 +y2b2 =1的斜率为k的一组平行弦中点的轨迹方程 .解 作变换 x′ =bax ,y′=y ,则椭圆化成圆x′2 +y′2 =b2 ,平行弦方程y=kx +m化成y′=abkx′ +m .易得在圆内平行弦中点的轨迹是垂直于弦且过圆心的直线y′=-bakx…  相似文献   

12.
一、伸缩变换性质研究研究结论:若一直线与圆相交,经伸缩变换后所得直线与椭圆也相交;若一直线与圆相切,经伸缩变换后所得直线与椭圆也相切;若一直线与圆相离,经伸缩变换后所得直线与椭圆也相离。(分析过程略)  相似文献   

13.
在椭圆方程中,令a=b=r,则椭圆方程变为圆方程;在椭圆面积公式S=πab中,令a=b=r,则椭圆面积公式变为圆的面积公式.以上说明圆可以看作是特殊的椭圆,它们有很多相似的性质,从而椭圆的有些问题就可以用圆的知识来处理,比如研究直线和椭圆、椭圆和椭圆的位置关系、  相似文献   

14.
讨论直线和椭圆位置关系利用传统的“代数法”计算繁杂.课堂上,一道课本例题探究了椭圆和圆的关系,进而得出将椭圆进行伸缩变换可得到圆,由此引发学生思考,层层深入进行探究,得到了讨论直线和椭圆位置关系的一种新方法——“几何法”,前后知识联系,记忆方便,运用简单.  相似文献   

15.
苏教版高中数学教材选修系列4-2中专题“矩阵与变换”向学生介绍了图形变换和数学表示之间的紧密联系,同时揭示了变换前后几何图形的相关性.利用伸缩变换解决一些几何题目,以较高的观点来研究初等几何,可以使问题变得更加简洁,透彻,尤其在解决椭圆的某些综合问题时,可以利用伸缩变换的办法,把椭圆变换为圆,再利用圆良好的几何性质来进行研究,会使得问题的解决过程变得简化.  相似文献   

16.
正近几年,有关椭圆问题"圆化"的文章,不断的出现.许多教师发现,一些椭圆的题目,通过伸缩变换,转换为圆,问题从"分析"到"解答"都变得更直观、简洁、优美.因此,许多教师、学生在遇到椭圆问题时,都"勇于"尝试此法.然而,并非所有的题目都可以使用伸缩变换.事实上,只有一小部分的题目适用.那么,我们如何在"审题"之时,就知道伸缩变换是否适用该题?为此,我们需要从几个方面来认识"伸缩变换":  相似文献   

17.
直线与椭圆位置关系问题的换元解法   总被引:1,自引:0,他引:1  
通过换元,可以把直线与椭圆位置关系问题转化为直线与圆的位置关系问题来解决,请看下面几题的全新解法.  相似文献   

18.
中学阶段我们对切线的认识是逐步深入的,平面几何中,我们说当直线与圆只有一个交点时,直线与圆相切,直线叫做圆的切线.在解析几何中,平面几何里有关圆的切线问题放在了坐标平面内,除了将直线与圆相切的位置关系转化为圆心到直线的距离等于半径(这是比较合理的解法),很多时候我们也会求出圆和直线的方程,然后联立方程得到一个二元二次方程组,当这个方程组有且只有一组解时,直线与圆相切.虽然后一种解法的运算量较大,但是由于对学习直线与椭圆相切问题的解法有正迁移的作用,因而教学中很多教师会说明这样也可以解有关直线与圆相切的问题.在紧接着的直线与椭圆的位置关系的学习中,无论是教师还是学生都感觉得心应手,可是在双曲线的学习中出现了新问题.而在微分学中所研究的曲线不都是二次曲线,切线与曲线的交点可以不止一个,因此就不再用交点个数来定义,而是用割线的极限位置来定义曲线的切线.直线与圆相切的情形在同学们的大脑中已根深蒂固,受此负迁移的影响,不少学生对切线问题产生错误的想法,导致错解时常发生,下面举例予以说明.  相似文献   

19.
直线与椭圆、双曲线位置关系的一种新的判定方法   总被引:1,自引:0,他引:1  
我们知道 ,针对圆的特殊几何性质 ,可以用圆心到直线的距离与圆的半径的大小关系来判定直线和圆的位置关系 .实际上 ,结合椭圆和双曲线的第一定义 ,直线和椭圆、双曲线的位置关系的判定也有类似的结论 .引理 1 平面上 ,两点F1 、F2 在直线l的同侧 ,点F′1 和点F1 关于直线l轴对称 ,点P在直线l上 ,则 |PF1 | + |PF2 |≥|F′1 F2 |(如图 1) .(证明略 )定理 1 直线上一点到椭圆两焦点的距离的和的最小值 (1)小于长轴长 ,则直线与椭圆相交 ;(2 )等于长轴长 ,则直线与椭圆相切 ;(3 )大于长轴长 ,则直线与椭圆相离 .图 1 …  相似文献   

20.
坐标轴的伸缩变换赵多彪本文旨在介绍坐标轴伸缩变换的概念及有关性质,为简捷明快地解决与椭圆有关的数学问题提供一个重要工具。一、问题的提出众所周知,圆作为椭圆的一个特例,它在某些方面显示了其特殊性质,因此,解决与圆有关的数学问题较解决椭圆问题也就相对容易...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号