首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Dynamical analysis of winter terrain park jumps   总被引:1,自引:1,他引:0  
Jump features in winter terrain parks frequently pose a hazard to patrons and may represent a significant liability risk to winter resorts. By performing a simple dynamic analysis of terrain park jumps, the relative risk to impact injuries for any proposed jump design can be quantified thereby allowing terrain park designers to minimize the risk from this class of injury.  相似文献   

2.
Designing tomorrow’s snow park jump   总被引:1,自引:1,他引:0  
Recent epidemiological studies of injuries at ski resorts have found that snow park jumps pose a significantly greater risk for certain classes of injury to resort patrons than other normal skiing activities. Today, most recreational jumps are built by skilled groomers without an engineering design process, but the Snow Skiing Committee (F-27) of the American Society for Testing and Materials is considering the inclusion of recreational jumps in their purview which may lead to a greater role for engineering jump designs in the US in the future. Similar efforts are underway in Europe as well. The purpose of this work is to review the current state of the science of snow park jumps, describe the jump design process, and outline the role that modelling will play in designing tomorrow’s snow park jumps.  相似文献   

3.
ABSTRACT

Previous research suggests that landing mechanics may be affected by the mechanics of the preceding jump take-off. The purpose of the present study was to investigate whether jump take-off mechanics influence the subsequent landing mechanics. Female volleyball (n = 17) and ice hockey (n = 19) players performed maximal vertical jumps with forefoot and heel take-off strategies. During forefoot and heel jumps, participants were instructed to shift their weight to their forefoot or heel, respectively, and push through this portion of the foot throughout the jump. Jump mechanics were examined using 3D motion analysis, where lower extremity net joint moment (NJM) work, NJM, and segment angles were compared between forefoot and heel jumps using multivariate ANOVA. During jump take-off, participants performed more positive ankle plantar flexor and knee extensor NJM work in forefoot compared to heel jumps (P < 0.05). From initial foot contact to foot flat, participants performed more negative ankle plantar flexor and hip extensor NJM work during heel compared to forefoot jumps (P < 0.05). The present results demonstrate that using a heel take-off strategy results in a different distribution of lower extremity NJM work and NJM during landing compared to landings following forefoot jumps.  相似文献   

4.
A plausible explanation for the ancient long jump records from Greek antiquity is sought on the basis of pictorial and written sources, and corroborated with practical tests. Ancient sources report that athletes jumped more than 15 m with weights in their hands, which enabled them to jump further than without these weights. It is proposed that the ancient Greek long jump was a continuous succession of five standing broad jumps, in which the landing phase of one jump was also the countermovement for the next jump. Four trained athletes jumped further with (14.64 +/- 0.76 m, range 13.64-15.63 m) than without weights (13.88 +/- 0.70 m, range 12.60-14.75 m; P = 0.001). These results show that this technique is executable, fits with ancient written and pictorial sources, and allows trained modern athletes to jump distances well over 15 m. The extra distance jumped when using weights may be due to changes in the position of the jumper's centre of mass at take-off and at landing, and an increase in take-off velocity stemming from several biomechanical mechanisms.  相似文献   

5.
A plausible explanation for the ancient long jump records from Greek antiquity is sought on the basis of pictorial and written sources, and corroborated with practical tests. Ancient sources report that athletes jumped more than 15?m with weights in their hands, which enabled them to jump further than without these weights. It is proposed that the ancient Greek long jump was a continuous succession of five standing broad jumps, in which the landing phase of one jump was also the countermovement for the next jump. Four trained athletes jumped further with (14.64?±?0.76?m, range 13.64?–?15.63?m) than without weights (13.88?±?0.70?m, range 12.60?–?14.75?m; P = 0.001). These results show that this technique is executable, fits with ancient written and pictorial sources, and allows trained modern athletes to jump distances well over 15?m. The extra distance jumped when using weights may be due to changes in the position of the jumper's centre of mass at take-off and at landing, and an increase in take-off velocity stemming from several biomechanical mechanisms.  相似文献   

6.
In this study, we investigated trunk coordination during rate-controlled bipedal vertical dance jumps. The aims of the study were to investigate the pattern of coordination and the magnitude of coordination variability within jump phases and relative to phase-defining events during the jump. Lumbar and thoracic kinematics were collected from seven dancers during a series of jumps at 95 beats per minute. The vector coding technique was used to quantify the pattern and variability of trunk coordination. Coordination was predominantly anti-phase during propulsion and landing. Mean coordination variability peaked just before the landing phase and at the transition from landing to propulsion phases, and was lowest during the propulsion phase just before toe-off. The results indicate that peaks in variability could be explained by task and phase-specific biomechanical demands.  相似文献   

7.
Technical evaluation in the sport of figure skating is characterized by a subjective marking system. Figure skating judges are responsible for quickly and accurately discerning the quality of technical elements as well as assigning a score to the overall aesthetic appearance of a performance. Traditionally, overall placement marks are assigned for the entire performance; however, the landing of a jump is widely acknowledged as one of the most critical elements of a skater's program. Therefore, our aims were to identify the biomechanical variables that contribute to technical success in executing landings and to establish whether landings rated as biomechanically optimal are also awarded high technical merit scores by judges. Ten nationally ranked competitive figure skaters were asked to execute on-ice, double and triple revolution jumps and to try to land the jumps void of technical faults within a calibrated space. Data were collected at 60 Hz using standard three-dimensional videography. Data reduction was done using the APAS system (Ariel Dynamics Inc). Concurrently, videotapes were viewed and evaluated by 42 accredited judges to determine the perceived technical quality of the landing performances. Judges were asked to evaluate the landing phase of each jump against a landing criteria document. A comparative criteria model was developed to facilitate an assessment of excellence in landing performances through both empirical and subjective analyses. Results of these analyses were twofold: a biomechanical profile of on-ice landings was obtained, and on-ice jump landing strategies rated by empirical evaluations were in agreement with judge's perceptions of the same performances.  相似文献   

8.
Skating     
Technical evaluation in the sport of figure skating is characterized by a subjective marking system. Figure skating judges are responsible for quickly and accurately discerning the quality of technical elements as well as assigning a score to the overall aesthetic appearance of a performance. Traditionally, overall placement marks are assigned for the entire performance; however, the landing of a jump is widely acknowledged as one of the most critical elements of a skater's program. Therefore, our aims were to identify the biomechanical variables that contribute to technical success in executing landings and to establish whether landings rated as biomechanically optimal are also awarded high technical merit scores by judges. Ten nationally ranked competitive figure skaters were asked to execute on‐ice, double and triple revolution jumps and to try to land the jumps void of technical faults within a calibrated space. Data were collected at 60 Hz using standard three‐dimensional videography. Data reduction was done using the APAS system (Ariel Dynamics Inc). Concurrently, videotapes were viewed and evaluated by 42 accredited judges to determine the perceived technical quality of the landing performances. Judges were asked to evaluate the landing phase of each jump against a landing criteria document. A comparative criteria model was developed to facilitate an assessment of excellence in landing performances through both empirical and subjective analyses. Results of these analyses were twofold: a biomechanical profile of on‐ice landings was obtained, and on‐ice jump landing strategies rated by empirical evaluations were in agreement with judge's perceptions of the same performances.  相似文献   

9.
探讨主动落地反跳和被动着地两种落地方式下,篮球鞋对于冲击力信号和股四头肌软组织室振动的影响,以及它们三者之间可能存在的相互关系,并找寻在此过程中能够切实反映篮球鞋变化的新的敏感指标,以期为运动鞋的功能需求和设计提供新的方向。  相似文献   

10.
通过对部分中国优秀男子三级跳远运动员与部分外国优秀男子三级跳远运动员在三跳中起着地、离地瞬间两大腿间的夹角,支撑阶段摆动腿的摆动幅度和着地瞬间支撑腿大、小腿的角速度等反映下肢摆动动作积极程度的因素的分析对比,结合三级跳远的专项理论,得出中国优秀男子三级跳远运动员在三跳中下肢摆动动作与外国运动员的差距,并针对性地提出建议。  相似文献   

11.
影响三级跳远成绩的若干因素   总被引:3,自引:0,他引:3  
通过阅读、整理国内外有关三级跳远方面的献资料,阐明三级跳远中助跑速度、起跳技术、三跳比例、力量以及平衡对三级跳远成绩的影响,为三级跳远的研究提供参考。  相似文献   

12.
The purpose of this investigation was to compare valgus/varus knee angles during various jumps and lower body strength between males and females relative to body mass. Seventeen recreationally active females (age: 21.94 ± 2.59 years; height: 1.67 ± 0.05 m; mass: 64.42 ± 8.39 kg; percent body fat: 26.89 ± 6.26%; squat one-repetition maximum: 66.18 ± 19.47 kg; squat to body mass ratio: 1.03 ± 0.28) and 13 recreationally active males (age: 21.69 ± 1.65 years; height: 1.77 ± 0.07 m; mass: 72.39 ± 9.23 kg; percent body fat: 13.15 ± 5.18%; squat one-repetition maximum: 115.77 ± 30.40 kg; squat to body mass ratio: 1.59 ± 0.31) performed a one-repetition maximum in the squat and three of each of the following jumps: countermovement jump, 30 cm drop jump, 45 cm drop jump, and 60 cm drop jump. Knee angles were analysed using videography and body composition was analysed by dual-energy X-ray absorptiometry to allow for squat to body mass ratio and squat to fat free mass ratio to be calculated. Significant differences (P ≤ 0.05) were found between male and female one-repetition maximum, male and female squat to body mass ratio, and male and female squat to fat free mass ratio. Significant differences were found between male and female varus/valgus knee positions during maximum flexion of the right and left leg in the countermovement jump, drop jump from 30 cm, drop jump from 45 cm, and drop jump from 60 cm. Correlations between varus/valgus knee angles and squat to body mass ratio for all jumps displayed moderate, non-significant relationships (countermovement jump: r = 0.445; drop jump from 30 cm: r = 0.448; drop jump from 45 cm: r = 0.449; drop jump from 60 cm: r = 0.439). In conclusion, males and females have significantly different lower body strength and varus/valgus knee position when landing from jumps.  相似文献   

13.
重新审度“三级跳远的极值与各跳最佳组合”的研究方法   总被引:4,自引:0,他引:4  
王炳彝  李实 《体育科学》1993,13(4):83-86
本文根据三级跳远的技术和三跳相互间的约束特点,运用逐步回归方法建立了世界水平三级跳远成绩与三跳远度的非线性最佳数学模型,并得出不同水平的三跳最佳组合与最大远度的关系。同时,分析了各跳对三级跳远成绩的影响,为指导不同水平的三级跳远训练制定了控制模式。  相似文献   

14.
A variety of the available time to react (ATR) has been utilised to study knee biomechanics during reactive jump-landing tasks. The purpose was to quantify knee kinematics and kinetics during a jump-land-jump task of three possible directions as the ATR was reduced. Thirty-four recreational athletes performed 45 trials of a jump-land-jump task, during which the direction of the second jump (lateral, medial or vertical) was indicated before they initiated the first jump, the instant they initiated the first jump, 300 ms before landing, 150 ms before landing or at the instant of landing. Knee joint angles and moments close to the instant of landing were significantly different when the ATR was equal to or more than 300 ms before landing, but became similar when the ATR was 150 ms or 0 ms before landing. As the ATR was decreased, knee moments decreased for the medial jump direction, but increased for the lateral jump direction. When the ATR is shorter than an individual’s reaction time, the movement pattern cannot be pre-planned before landing. Knee biomechanics are dependent on the timing of the signal and the subsequent jump direction. Precise control of timing and screening athletes with low ATR are suggested.  相似文献   

15.
An increase in the period over which a muscle generates force can lead to the generation of greater force and, therefore, for example in jumping, to greater jump height. The aim of this study was to examine the effect of squat depth on maximum vertical jump performance. We hypothesized that jump height would increase with increasing depth of squat due to the greater time available for the generation of muscular force. Ten participants performed jumps from preferred and deep squat positions. A computer model simulated jumps from the different starting postures. The participants showed no difference in jump height in jumps from deep and preferred positions. Simulated jumps produced similar kinematics to the participants' jumps. The optimal squat depth for the simulated jumps was the lowest position the model was able to jump from. Because jumping from a deep squat is rarely practised, it is unlikely that these jumps were optimally coordinated by the participants. Differences in experimental vertical ground reaction force patterns also suggest that jumps from a deep squat are not optimally coordinated. These results suggest there is the potential for athletes to increase jump performance by exploiting a greater range of motion.  相似文献   

16.
Abstract

The purpose of this study was to determine the influence of lumbar spine extension and erector spinae muscle activation on vertical jump height during maximal squat jumping. Eight male athletes performed maximal squat jumps. Electromyograms of the erector spinae were recorded during these jumps. A simulation model of the musculoskeletal system was used to simulate maximal squat jumping with and without spine extension. The effect on vertical jump height of changing erector spinae strength was also tested through the simulated jumps. Concerning the participant jumps, the kinematics indicated a spine extension and erector spinae activation. Concerning the simulated jumps, vertical jump height was about 5.4 cm lower during squat jump without trunk extension compared to squat jump. These results were explained by greater total muscle work during squat jump, more especially by the erector spinae work (+119.5 J). The erector spinae may contribute to spine extension during maximal squat jumping. The simulated jumps confirmed this hypothesis showing that vertical jumping was decreased if this muscle was not taken into consideration in the model. Therefore it is concluded that the erector spinae should be considered as a trunk extensor, which enables to enhance total muscle work and consequently vertical jump height.  相似文献   

17.
In this study, we examined the acute effects of manipulating exercise order when combining countermovement jumps and loaded parallel squats in a complex training session, and the acute effects of countermovement jumps and loaded parallel squats on sprinting performance. Eight rugby players participated in five trials, including two that involved performing loaded parallel squats followed by countermovement jumps or vice versa in a randomized cross-over design. Peak rate of force development and peak force were measured during countermovement jumps and loaded parallel squats. Peak power, jump height, and duration of amortization phase were also determined during the countermovement jumps. Peak force during squatting was significantly greater in both cross-over treatments (loaded parallel squats-countermovement jumps and countermovement jumps-loaded parallel squats) compared with the control (P 相似文献   

18.
Abstract

An increase in the period over which a muscle generates force can lead to the generation of greater force and, therefore, for example in jumping, to greater jump height. The aim of this study was to examine the effect of squat depth on maximum vertical jump performance. We hypothesized that jump height would increase with increasing depth of squat due to the greater time available for the generation of muscular force. Ten participants performed jumps from preferred and deep squat positions. A computer model simulated jumps from the different starting postures. The participants showed no difference in jump height in jumps from deep and preferred positions. Simulated jumps produced similar kinematics to the participants' jumps. The optimal squat depth for the simulated jumps was the lowest position the model was able to jump from. Because jumping from a deep squat is rarely practised, it is unlikely that these jumps were optimally coordinated by the participants. Differences in experimental vertical ground reaction force patterns also suggest that jumps from a deep squat are not optimally coordinated. These results suggest there is the potential for athletes to increase jump performance by exploiting a greater range of motion.  相似文献   

19.
Abstract

The aims of this study were to: (1) assess the reliability of various kinetic and temporal variables for unilateral vertical, horizontal, and lateral countermovement jumps; (2) determine whether there are differences in vertical ground reaction force production between the three types of jumps; (3) quantify the magnitude of asymmetry between limbs for variables that were established as reliable in a healthy population and whether asymmetries were consistent across jumps of different direction; and (4) establish the best kinetic predictor(s) of jump performance in the vertical, horizontal, and lateral planes of motion. Thirty team sport athletes performed three trials of the various countermovement jumps on both legs on two separate occasions. Eccentric and concentric peak force and concentric peak power were the only variables with acceptable reliability (coefficient of variation = 3.3–15.1%; intra-class correlation coefficient = 0.70–0.96). Eccentric and concentric peak vertical ground reaction force (14–16%) and concentric peak power (45–51%) were significantly (P < 0.01) greater in the vertical countermovement jump than in the horizontal countermovement jump and lateral countermovement jump, but no significant difference was found between the latter two jumps. No significant leg asymmetries (–2.1% to 9.3%) were found in any of the kinetic variables but significant differences were observed in jump height and distance. The best single predictors of vertical countermovement jump, horizontal countermovement jump, and lateral countermovement jump performance were concentric peak vertical power/body weight (79%), horizontal concentric peak power/body weight (42.6%), and eccentric peak vertical ground reaction force/body weight (14.9%) respectively. These findings are discussed in relation to monitoring and developing direction-specific jump performance.  相似文献   

20.
The purpose of this study was to evaluate a new procedure of data processing from a body-mounted accelerometer to improve the assessment of vertical jump height. As the main difficulty when using an accelerometer is to detect the times of take-off and of landing, a new criterion was proposed to detect these times more accurately. Thirty physical education students participated in this study. They performed three squat jumps, three countermovement jumps with hands placed on the pelvis and three countermovement jumps with free arms ( \(n = 270\) jumps). Flight time, vertical jump height and vertical velocity at take-off were collected from the accelerometer (the Myotest device and its specific software), the modified accelerometer (raw data of the Myotest and a specific treatment for the detection take-off and landing times) and a force platform, considered as the reference device. Concerning the flight time, systematic bias decreased from \(0.034 \pm 0.079\)  s with the original accelerometer to \(-0.008 \pm 0.078\)  s with the modified accelerometer. Regarding the vertical jump height, systematic bias decreased from \(4.8 \pm 9.4\)  cm with the original accelerometer to \(-1.3 \pm 9.2\)  cm with the modified accelerometer. Finally, the vertical velocity systematic bias was \(-0.12 \pm 0.28\) and \(-0.19 \pm 0.29\)  m s \(^{-1}\) with the original accelerometer and the modified accelerometer, respectively. This study showed that the improvement proposed for the body-mounted accelerometer decreased the systematic bias, especially for the vertical jump height assessment, but not the random error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号