首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 355 毫秒
1.
It has previously been shown that the metabolic acidaemia induced by a continuous warm-up at the 'lactate threshold' is associated with a reduced accumulated oxygen deficit and decreased supramaximal performance. The aim of this study was to determine if an intermittent, high-intensity warm-up could increase oxygen uptake (V02) without reducing the accumulated oxygen deficit, and thus improve supramaximal performance. Seven male 500 m kayak paddlers, who had represented their state, volunteered for this study. Each performed a graded exercise test to determine V02max and threshold parameters. On subsequent days and in a random, counterbalanced order, the participants then performed a continuous or intermittent, high-intensity warm-up followed by a 2 min, all-out kayak ergometer test. The continuous warm-up consisted of 15 min of exercise at approximately 65% V02max. The intermittent, high-intensity warm-up was similar, except that the last 5 min was replaced with five 10 s sprints at 200% V02max, separated by 50 s of recovery at ~55% V02max. Significantly greater (P<0.05) peak power (intermittent vs continuous: 629 ± 199 vs 601 ± 204W) and average power (intermittent vs continuous: 328±39.0 vs 321 ±42.4 W) were recorded after the intermittent warm-up. There was no significant difference between conditions for peak V02, total V02 or the accumulated oxygen deficit. The results of this study indicate that 2 min all-out kayak ergometer performance is significantly better after an intermittent rather than a continuous warm-up.  相似文献   

2.
The aim of this study was to objectively quantify ratings of perceived enjoyment using the Physical Activity Enjoyment Scale following high-intensity interval running versus moderate-intensity continuous running. Eight recreationally active men performed two running protocols consisting of high-intensity interval running (6 × 3 min at 90% VO(2max) interspersed with 6 × 3 min active recovery at 50% VO(2max) with a 7-min warm-up and cool down at 70% VO(2max)) or 50 min moderate-intensity continuous running at 70% VO(2max). Ratings of perceived enjoyment after exercise were higher (P < 0.05) following interval running compared with continuous running (88 ± 6 vs. 61 ± 12) despite higher (P < 0.05) ratings of perceived exertion (14 ± 1 vs. 13 ± 1). There was no difference (P < 0.05) in average heart rate (88 ± 3 vs. 87 ± 3% maximum heart rate), average VO(2) (71 ± 6 vs. 73 ± 4%VO(2max)), total VO(2) (162 ± 16 vs. 166 ± 27 L) or energy expenditure (811 ± 83 vs. 832 ± 136 kcal) between protocols. The greater enjoyment associated with high-intensity interval running may be relevant for improving exercise adherence, since running is a low-cost exercise intervention requiring no exercise equipment and similar relative exercise intensities have previously induced health benefits in patient populations.  相似文献   

3.
We tested the hypothesis that work-matched supramaximal intermittent warm-up improves final-sprint power output to a greater degree than submaximal constant-intensity warm-up during the last 30?s of a 120-s supramaximal exercise simulating the final sprint during sports events lasting approximately 2?min. Ten male middle-distance runners performed a 120-s supramaximal cycling exercise consisting of 90?s of constant-workload cycling at a workload corresponding to 110% maximal oxygen uptake (VO2max) followed by 30?s of maximal-effort cycling. This exercise was preceded by 1) no warm-up (Control), 2) a constant-workload cycling warm-up at a workload of 60%VO2max for 6?min and 40?s, or 3) a supramaximal intermittent cycling warm-up for 6?min and 40?s consisting of 5 sets of 65?s of cycling at a workload of 46%VO2max?+?15?s of supramaximal cycling at a workload of 120%VO2max. By design, total work was matched between the two warm-up conditions. Supramaximal intermittent and submaximal constant-workload warm-ups similarly increased 5-s peak (590?±?191 vs. 604?±?215W, P?=?0.41) and 30-s mean (495?±?137 vs. 503?±?154W, P?=?0.48) power output during the final 30-s maximal-effort cycling as compared to the no warm-up condition (5-s peak: 471?±?165W; 30-s mean: 398?±?117W). VO2 during the 120-s supramaximal cycling was similarly increased by the two warm-ups as compared to no-warm up (P?≤?0.05). These findings show that work-matched supramaximal intermittent and submaximal constant-workload warm-ups improve final sprint (~30?s) performance to similar extents during the late stage of a 120-s supramaximal exercise bout.  相似文献   

4.
The aim of this study was to compare accumulated oxygen deficit data derived using two different exercise protocols with the aim of producing a less time-consuming test specifically for use with athletes. Six road and four track male endurance cyclists performed two series of cycle ergometer tests. The first series involved five 10 min sub-maximal cycle exercise bouts, a VO2peak test and a 115% VO2peak test. Data from these tests were used to estimate the accumulated oxygen deficit according to the calculations of Medb? et al. (1988). In the second series of tests, participants performed a 15 min incremental cycle ergometer test followed, 2 min later, by a 2 min variable resistance test in which they completed as much work as possible while pedalling at a constant rate. Analysis revealed that the accumulated oxygen deficit calculated from the first series of tests was higher (P < 0.02) than that calculated from the second series: 52.3 +/- 11.7 and 43.9 +/- 6.4 ml x kg(-1), respectively (mean +/- s). Other significant differences between the two protocols were observed for VO2peak, total work and maximal heart rate; all were higher during the modified protocol (P < 0.01 and P < 0.02, respectively). Oxygen kinetics were also significantly faster during the modified 2 min maximal test. We conclude that the difference in accumulated oxygen deficit between protocols was probably due to a reduced oxygen uptake, possibly caused by a slower oxygen on-response during the 115% VO2peak test in the first series, and VO2-power output regression differences caused by an elevated VO2 during the early stages of the second series.  相似文献   

5.
The aim of this study was to predict indoor rowing performance in 12 competitive female rowers (age 21.3 +/- 3.6 years, height 1.68 +/- 0.54 m, body mass 67.1 +/- 11.7 kg; mean +/- s) using a 30 s rowing sprint, maximal oxygen uptake and the blood lactate response to submaximal rowing. Blood lactate and oxygen uptake (VO2) were measured during a discontinuous graded exercise test on a Concept II rowing ergometer incremented by 25 W for each 2 min stage; the highest VO2 measured during the test was recorded as VO2max (mean = 3.18 +/- 0.35 l.min-1). Peak power (380 +/- 63.2 W) and mean power (368 +/- 60.0 W) were determined using a modified Wingate test protocol on the Concept II rowing ergometer. Rowing performance was based on the results of the 2000 m indoor rowing championship in 1997 (466.8 +/- 12.3 s). Laboratory testing was performed within 3 weeks of the rowing championship. Submitting mean power (Power), the highest and lowest five consecutive sprint power outputs (Maximal and Minimal), percent fatigue in the sprint test (Fatigue), VO2max (l.min-1), VO2max (ml.kg-1.min-1), VO2 at the lactate threshold, power at the lactate threshold (W), maximal lactate concentration, lactate threshold (percent VO2max) and VEmax (l.min-1) to a stepwise multiple regression analysis produced the following model to predict 2000 m rowing performance: Time2000 = -0.163 (Power) -14.213.(VO2max l.min-1) +0.738.(Fatigue) 7.259 (R2 = 0.96, standard error = 2.89). These results indicate that, in the women studied, 75.7% of the variation in 2000 m indoor rowing performance time was predicted by peak power in a rowing Wingate test, while VO2max and fatigue during the Wingate test explained an additional 12.1% and 8.2% of the variance, respectively.  相似文献   

6.
The aim of this study was to determine the reproducibility of the maximal accumulated oxygen deficit and the associated exercise time to exhaustion during short-distance running. Fifteen well-trained males (mean +/- s: VO2max = 58.0+/-4.6 ml x kg(-1) x min(-1)) performed the maximum accumulated oxygen deficit test at an exercise intensity equivalent to 125% VO2max. The test was repeated at the same time of day on three occasions within 3 weeks. There was no significant systematic bias between trials for either maximum accumulated oxygen deficit (man +/- s: trial 1 = 69.0+/-13.1; trial 2 = 71.4+/-12.5; trial 3 = 70.4+/-15.0 ml O2 Eq x kg(-1); ANOVA, F = 0.70, PP= 0.51) or exercise time to exhaustion (trial 1 = 194 + 31.1; trial 2 = 198 + 33.2; trial 3 = 201 + 36.8 s; F= 1.49, P = 0.24). In addition, other traditional measures of reliability were also favourable. These included intraclass correlation coefficients of 0.91 and 0.87, and sample coefficients of variation of 6.8% and 5.0%, for maximum accumulated oxygen deficit and exercise time to exhaustion respectively. However, the '95% limits of agreement' were 0+/-15.1 ml O2 Eq (1.01 multiply/divide 1.26 as a ratio) and 0+/-33.5 s (1.0 multiply/divide 1.18 as a ratio) for maximum accumulated oxygen deficit and exercise time to exhaustion respectively. We estimate that the sample sizes required to detect a 10% change in exercise time to exhaustion and maximum accumulated oxygen deficit after a repeated measures experiment are 10 and 20 respectively. Unlike the results of previous maximum accumulated oxygen deficit studies, we conclude that it is not a reliable measure.  相似文献   

7.
The aim of this study was to examine the variability of the oxygen uptake (VO2) kinetic response during moderate- and high-intensity treadmill exercise within the same day (at 06:00, 12:00 and 18:00 h) and across days (on five occasions). Nine participants (age 25 +/- 8 years, mass 70.2 +/- 4.7 kg, VO2max 4137 +/- 697 ml x min(-1); mean +/- s) took part in the study. Six of the participants performed replicate 'square-wave' rest-to-exercise transitions of 6 min duration at running speeds calculated to require 80% VO2 at the ventilatory threshold (moderate-intensity exercise) and 50% of the difference between VO2 at the ventilatory threshold and VO2max (50% delta; high-intensity exercise) on 5 different days. Although the amplitudes of the VO2 response were relatively constant (coefficient of variation approximately 6%) from day to day, the time-based parameters were more variable (coefficient of variation approximately 15 to 30%). All nine participants performed replicate square-waves for each time of day. There was no diurnal effect on the time-based parameters of VO2 kinetics during either moderate- or high-intensity exercise. However, for high-intensity exercise, the amplitude of the primary component was significantly lower during the 12:00 h trial (2859 +/- 142 ml x min(-1) vs 2955 +/- 135 ml x min(-1) at 06:00 h and 2937 +/- 137 ml x min(-1) at 18:00 h; P < 0.05), but this effect was eliminated when expressed relative to body mass. The results of this study indicate that the amplitudes of the VO2 kinetic responses to moderate- and high-intensity treadmill exercise are similar within and across test days. The time-based parameters, however, are more variable from day to day and multiple transitions are, therefore, recommended to increase confidence in the data.  相似文献   

8.
In 19 elite schoolboy rowers, the relationships between anthropometric characteristics, metabolic parameters, strength variables and 2000-m rowing ergometer performance time were analysed to test the hypothesis that a combination of these variables would predict performance better than either individual variables or one category of variables. Anthropometric characteristics, maximal oxygen uptake (VO2max), accumulated oxygen deficit, net efficiency, leg strength and 2000-m rowing ergometer time were measured. Body mass, VO2max and knee extension correlated with 2000-m performance time (r= -0.41, -0.43 and -0.40, respectively; P< 0.05), while net efficiency and accumulated oxygen deficit did not. Multiple-regression analyses indicated that the prediction model using anthropometric variables alone best predicts performance (R = 0.82), followed by the equation comprising body mass, VO2max and skinfolds (R = 0.80). Although the regression equations increased the predictive power from that obtained using single variables, the hypothesis that a prediction model consisting of variables from different physiological categories would predict performance better than variables from one physiological category was not supported.  相似文献   

9.
Maximal oxygen uptake VO(2max)) is considered the optimal method to assess aerobic fitness. The measurement of VO(2max), however, requires special equipment and training. Maximal exercise testing with determination of maximal power output offers a more simple approach. This study explores the relationship between [Vdot]O(2max) and maximal power output in 247 children (139 boys and 108 girls) aged 7.9-11.1 years. Maximal oxygen uptake was measured by indirect calorimetry during a maximal ergometer exercise test with an initial workload of 30 W and 15 W x min(-1) increments. Maximal power output was also measured. A sample (n = 124) was used to calculate reference equations, which were then validated using another sample (n = 123). The linear reference equation for both sexes combined was: VO(2max) (ml x min(-1)) = 96 + 10.6 x maximal power + 3.5 . body mass. Using this reference equation, estimated VO(2max) per unit of body mass (ml x min(-1) x kg(-1)) calculated from maximal power correlated closely with the direct measurement of VO(2max) (r = 0.91, P <0.001). Bland-Altman analysis gave a mean limits of agreement of 0.2+/-2.9 (ml x min(-1) x kg(-1)) (1 s). Our results suggest that maximal power output serves as a good surrogate measurement for VO(2max) in population studies of children aged 8-11 years.  相似文献   

10.
Graded exercise tests are commonly used to assess peak physiological capacities of athletes. However, unlike time trials, these tests do not provide performance information. The aim of this study was to examine the peak physiological responses of female outrigger canoeists to a 1000-m ergometer time trial and compare the time-trial performance to two graded exercise tests performed at increments of 7.5 W each minute and 15 W each two minutes respectively. 17 trained female outrigger canoeists completed the time trial on an outrigger canoe ergometer with heart rate (HR), stroke rate, power output, and oxygen consumption (VO2) determined every 15 s. The mean (+/- s) time-trial time was 359 +/- 33 s, with a mean power output of 65 +/- 16 W and mean stroke rate of 56 +/- 4 strokes min(-1). Mean values for peak VO2, peak heart rate, and mean heart rate were 3.17 +/- 0.67 litres min(-1), 177 +/- 11 beats min(-1), and 164 +/- 12 beats min(-1) respectively. Compared with the graded exercise tests, the time-trial elicited similar values for peak heart rate, peak power output, peak blood lactate concentration, and peak VO2. As a time trial is sport-specific and can simultaneously quantify sprint performance and peak physiological responses in outrigger canoeing, it is suggested that a time trial be used by coaches for crew selection as it doubles as a reliable performance measure and a protocol for monitoring peak aerobic capacity of female outrigger canoeists.  相似文献   

11.
The aim of this study was to determine the reproducibility of the maximal accumulated oxygen deficit and the associated exercise time to exhaustion during short-distance running. Fifteen well-trained males (mean - s : VO 2max = 58.0 - 4.6 ml.kg -1 .min -1 ) performed the maximum accumulated oxygen deficit test at an exercise intensity equivalent to 125% VO 2max . The test was repeated at the same time of day on three occasions within 3 weeks. There was no significant systematic bias between trials for either maximum accumulated oxygen deficit (mean - s : trial 1 = 69.0 - 13.1; trial 2 = 71.4 - 12.5; trial 3 = 70.4 - 15.0 ml O 2 Eq.kg -1 ; ANOVA, F = 0.70, P = 0.51) or exercise time to exhaustion (trial 1 = 194 - 31.1; trial 2 = 198 - 33.2; trial 3 = 201 - 36.8 s; F = 1.49, P = 0.24). In addition, other traditional measures of reliability were also favourable. These included intraclass correlation coefficients of 0.91 and 0.87, and sample coefficients of variation of 6.8% and 5.0%, for maximum accumulated oxygen deficit and exercise time to exhaustion respectively. However, the '95% limits of agreement' were 0 - 15.1 ml O 2 Eq (1.01 2 / 1 1.26 as a ratio) and 0 - 33.5 s (1.0 2 / 1 1.18 as a ratio) for maximum accumulated oxygen deficit and exercise time to exhaustion respectively. We estimate that the sample sizes required to detect a 10% change in exercise time to exhaustion and maximum accumulated oxygen deficit after a repeated measures experiment are 10 and 20 respectively. Unlike the results of previous maximum accumulated oxygen deficit studies, we conclude that it is not a reliable measure.  相似文献   

12.
The aim of this study was to devise a laboratory-based protocol for a motorized treadmill that was representative of work rates observed during soccer match-play. Selected physiological responses to this soccer-specific intermittent exercise protocol were then compared with steady-rate exercise performed at the same average speed. Seven male university soccer players (mean +/- s: age 24 +/- 2 years, height 1.78 +/- 0.1 m, mass 72.2 +/- 5.0 kg, VO2max 57.8 +/- 4 ml x kg(-1) x min(-1)) completed a 45-min soccer-specific intermittent exercise protocol on a motorized treadmill. They also completed a continuous steady-rate exercise session for an identical period at the same average speed. The physiological responses to the laboratory-based soccer-specific protocol were similar to values previously observed for soccer match-play (oxygen consumption approximately 68% of maximum, heart rate 168 +/- 10 beats x min(-1)). No significant differences were observed in oxygen consumption, heart rate, rectal temperature or sweat production rate between the two conditions. Average minute ventilation was greater (P < 0.05) in intermittent exercise (81.3 +/- 0.2 l x min(-1)) than steady-rate exercise (72.4 +/- 11.4 l x min(-1)). The rating of perceived exertion for the session as a whole was 15 +/- 2 during soccer-specific intermittent exercise and 12 +/- 1 for continuous exercise (P < 0.05). The physiological strain associated with the laboratory-based soccer-specific intermittent protocol was similar to that associated with 45 min of soccer match-play, based on the variables measured, indicating the relevance of the simulation as a model of match-play work rates. Soccer-specific intermittent exercise did not increase the demands placed on the aerobic energy systems compared to continuous exercise performed at the same average speed, although the results indicate that anaerobic energy provision is more important during intermittent than during continuous exercise at the same average speed.  相似文献   

13.
The aim of this study was to determine the influence of type of warm-up on metabolism and performance during high-intensity exercise. Eight males performed 30 s of intense exercise at 120% of their maximal power output followed, 1 min later, by a performance cycle to exhaustion, again at 120% of maximal power output. Exercise was preceded by active, passive or no warm-up (control). Muscle temperature, immediately before exercise, was significantly elevated after active and passive warm-ups compared to the control condition (36.9 +/- 0.18 degrees C, 36.8 +/- 0.18 degrees C and 33.6 +/- 0.25 degrees C respectively; mean +/- sx) (P< 0.05). Total oxygen consumption during the 30 s exercise bout was significantly greater in the active and passive warm-up trials than in the control trial (1017 +/- 22, 943 +/- 53 and 838 +/- 45 ml O2 respectively). Active warm-up resulted in a blunted blood lactate response during high-intensity exercise compared to the passive and control trials (change = 5.53 +/- 0.52, 8.09 +/- 0.57 and 7.90 +/- 0.38 mmol x l(-1) respectively) (P < 0.05). There was no difference in exercise time to exhaustion between the active, passive and control trials (43.9 +/- 4.1, 48.3 +/- 2.7 and 46.9 +/- 6.2 s respectively) (P= 0.69). These results indicate that, although the mechanism by which muscle temperature is elevated influences certain metabolic responses during subsequent high-intensity exercise, cycling performance is not significantly affected.  相似文献   

14.
We examined the effects of pre-exercise sodium bicarbonate (NaHCO3) ingestion on the slow component of oxygen uptake (VO2) kinetics in seven professional road cyclists during intense exercise. One hour after ingesting either a placebo or NaHCO3 (0.3 g x kg body mass(-1)), each cyclist (age, 25 +/- 2 years; VO2max, 74.7 +/- 5.9 ml x kg(-1) x min(-1); mean +/- s) performed two bouts of 6 min duration at an intensity of 90% VO2max interspersed by 8 min of active recovery. Gas exchange and blood data (pH, blood lactate concentration and [HCO3-]) were collected during the tests. In both bouts, the slow component of VO2 was defined as the difference between end-exercise VO2 and the VO2 at the end of the third minute. No significant difference was found in the slow component of VO2 between conditions in the first (NaHCO3, 210 +/- 69 ml; placebo, 239 +/- 105 ml) or second trial (NaHCO3, 123 +/- 88 ml; placebo, 197 +/- 101 ml). In conclusion, pre-exercise NaHCO3 ingestion did not significantly attenuate the VO2 slow component of professional road cyclists during high-intensity exercise.  相似文献   

15.
A 12 week kayak training programme was evaluated in children who either had or did not have the anthropometric characteristics identified as being unique to senior elite sprint kayakers. Altogether, 234 male and female school children were screened to select 10 children with and 10 children without the identified key anthropometric characteristics. Before and after training, the children completed an all-out 2min kayak ergometer simulation test; measures of oxygen consumption, plasma lactate and total work accomplished were recorded. In addition, a 500m time trial was performed at weeks 3 and 12. The coaches were unaware which 20 children possessed those anthropometric characteristics deemed to favour development of kayak ability. All children improved in both the 2min ergometer simulation test and 500m time trial. However, boys who were selected according to favourable anthropometric characteristics showed greater improvement than those without such characteristics in the 2 min ergometer test only. In summary, in a small group of children selected according to anthropometric data unique to elite adult kayakers, 12 weeks of intensive kayak training did not influence the rate of improvement of on-water sprint kayak performance.  相似文献   

16.
The aim of the present study was to examine the effect of ingesting 75 g of glucose 45 min before the start of a graded exercise test to exhaustion on the determination of the intensity that elicits maximal fat oxidation (Fatmax). Eleven moderately trained individuals (VO2max: 58.9 +/- 1.0 ml x kg(-1) x min(-1); mean +/- sx), who had fasted overnight, performed two graded exercise tests to exhaustion, one 45 min after ingesting a placebo drink and one 45 min after ingesting 75 g of carbohydrate in the form of glucose. The tests started at 95 W and the workload was increased by 35 W every 3 min. Gas exchange measures and heart rate were recorded throughout exercise. Fat oxidation rates were calculated using stoichiometric equations. Blood samples were collected at rest and at the end of each stage of the test. Maximal fat oxidation rates decreased from 0.46 +/- 0.06 to 0.33 +/- 0.06 g min(-1) when carbohydrate was ingested before the start of exercise (P < 0.01). There was also a decrease in the intensity which elicited maximal fat oxidation (60.1 +/- 1.9% vs 52.0+3.4% VO2max) after carbohydrate ingestion (P < 0.05). Maximal power output was higher in the carbohydrate than in the placebo trial (346 +/- 12 vs 332 +/- 12 W) (P < 0.05). In conclusion, the ingestion of 75 g of carbohydrate 45 min before the onset of exercise decreased Fatmax by 14%, while the maximal rate of fat oxidation decreased by 28%.  相似文献   

17.
This study examined the effects of different work - rest durations during 40 min intermittent treadmill exercise and subsequent running performance. Eight males (mean +/- s: age 24.3 +/- 2.0 years, body mass 79.4 +/- 7.0 kg, height 1.77 +/- 0.05 m) undertook intermittent exercise involving repeated sprints at 120% of the speed at which maximal oxygen uptake (nu-VO2max) was attained with passive recovery between each one. The work - rest ratio was constant at 1:1.5 with trials involving short (6:9 s), medium (12:18 s) or long (24:36 s) work - rest durations. Each trial was followed by a performance run to volitional exhaustion at 150% nu-VO2max. After 40 min, mean exercise intensity was greater during the long (68.4 +/- 9.3%) than the short work - rest trial (54.9 +/- 8.1% VO2max; P < 0.05). Blood lactate concentration at 10 min was higher in the long and medium than in the short work - rest trial (6.1 +/- 0.8, 5.2 +/- 0.9, 4.5 +/- 1.3 mmol x l(-1), respectively; P < 0.05). The respiratory exchange ratio was consistently higher during the long than during the medium and short work - rest trials (P < 0.05). Plasma glucose concentration was higher in the long and medium than in the short work - rest trial after 40 min of exercise (5.6 +/- 0.1, 6.6 +/- 0.2 and 5.3 +/- 0.5 mmol x l(-1), respectively; P < 0.05). No differences were observed between trials for performance time (72.7 +/- 14.9, 63.2 +/- 13.2, 57.6 +/- 13.5 s for the short, medium and long work - rest trial, respectively; P = 0.17), although a relationship between performance time and 40 min plasma glucose was observed (P < 0.05). The results show that 40 min of intermittent exercise involving long and medium work - rest durations elicits greater physiological strain and carbohydrate utilization than the same amount of intermittent exercise undertaken with a short work-rest duration.  相似文献   

18.
田中  崔书强 《体育科研》2013,(5):64-66,71
目的:探讨我国优秀皮划艇运动员有氧能力的评价方法,为制定针对性的训练计划提供参考。方法:以备战伦敦奥运会国家皮划艇队运动员为研究对象,包括8名男子皮艇、7名女子皮艇和6名划艇运动员。利用皮划艇测功仪采用逐级递增负荷至力竭测最大摄氧量、利用4级1 000 m递增强度划船测试乳酸阈(4 mmol/l对应的船速)。结果:伦敦奥运周期我国优秀男子皮艇、女子皮艇和划艇运动员的绝对最大摄氧量分别为(5.25±0.22)l/min、(3.58±0.22)l/min、(4.85±0.13)l/min;相对最大摄氧量分别为(57.28±3.8 1)ml/(kg·min-1)、(50.92±3.78)ml/(kg·min-1)、(54.72±5.3)1ml/(kg·min-1),,经过3个月训练后男子皮艇和划艇运动员最大摄氧量无明显变化,女子皮艇运动员明显提高;男子皮艇、女子皮艇和划艇运动员乳酸阈船速经过3个月的训练后都明显提高,提高幅度分别为11.92%、3.77%和14.37%。结论:我国伦敦周期优秀皮划艇运动员的最大摄氧量高于国际优秀皮划艇运动员的平均水平,和最大摄氧量比较,乳酸阈表现出更好的训练可塑性,能够更为准确的反映皮划艇运动员有氧能力的动态变化。  相似文献   

19.
To examine the activity profile and physiological demands of top-class soccer refereeing, we performed computerized time-motion analyses and measured the heart rate and blood lactate concentration of 27 referees during 43 competitive matches in the two top Danish leagues. To relate match performance to physical capacity and training, several physiological tests were performed before and after intermittent exercise training. Total distance covered was 10.07+/-0.13 km (mean +/- s(x)), of which 1.67+/-0.08 km was high-intensity running. High-intensity running and backwards running decreased (P < 0.05) in the second half. Mean heart rate was 162+/-2 beats min(-1) (85+/-1% of maximal heart rate) and the mean blood lactate concentration was 4.9+/-0.3 (range 1.7-14.0) mmol x l(-1). The amount of high-intensity running during a match was related to the Yo-Yo intermittent recovery test (r2 = 0.57; P<0.05) and the 12 min run (r2 = 0.21; P<0.05). After intermittent training (n = 8), distance covered during high-intensity running was greater (2.06+/-0.13 vs 1.69+/-0.08 km; P< 0.05) and mean heart rate was lower (159+/-1 vs 164+/-2 beats x min(-1); P< 0.05) than before training. The results of the present study demonstrate that: (1) top-class soccer referees have significant aerobic energy expenditure throughout a game and episodes of considerable anaerobic energy turnover; (2) the ability to perform high-intensity running is reduced towards the end of matches; (3) the Yo-Yo intermittent recovery test can be used to evaluate referees' match performance; and (4) intense intermittent exercise training improves referees' performance capacity during a game.  相似文献   

20.
The purpose of this study was to assess the validity of predicting the maximal oxygen uptake (VO2(max)) of sedentary men from sub-maximal VO2 values obtained during a perceptually regulated exercise test. Thirteen healthy, sedentary males aged 29-52 years completed five graded exercise tests on a cycle ergometer. The first and fifth test involved a graded exercise test to determine VO2(max). The two maximal graded exercise tests were separated by three sub-maximal graded exercise tests, perceptually regulated at 3-min RPE intensities of 9, 11, 13, 15, and 17 on the Borg ratings of perceived exertion (RPE) scale, in that order. After confirmation that individual linear regression models provided the most appropriate fit to the data, the regression lines for the perceptual ranges 9-17, 9-15, and 11-17 were extrapolated to RPE 20 to predict VO2(max). There were no significant differences between VO2(max) values from the graded exercise tests (mean 43.9 ml x kg(-1) x min(-1), s = 6.3) and predicted VO2(max) values for the perceptual ranges 9-17 (40.7 ml x kg(-1) x min(-1), s = 2.2) and RPE 11-17 (42.5 ml x kg(-1) x min(-1), s = 2.3) across the three trials. The predicted VO2(max) from the perceptual range 9-15 was significantly lower (P < 0.05) (37.7 ml x kg(-1) x min(-1), s = 2.3). The intra-class correlation coefficients between actual and predicted VO2(max) for RPE 9-17 and RPE 11-17 across trials ranged from 0.80 to 0.87. Limits of agreement analysis on actual and predicted VO2 values (bias +/- 1.96 x S(diff)) were 3.4 ml x kg(-1) x min(-1) (+/- 10.7), 2.4 ml x kg(-1) x min(-1) (+/- 9.9), and 3.7 ml x kg(-1) x min(-1) (+/- 12.8) (trials 1, 2, and 3, respectively) of RPE range 9-17. Results suggest that a sub-maximal, perceptually guided graded exercise test provides acceptable estimates of VO2(max) in young to middle-aged sedentary males.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号