首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
Assessment of the personalities of medical students could enable medical educators to formulate strategies for the best development of academic and clinical competencies. In this article, we focus on the experience of students in the anatomy dissecting room. While there have been many attempts to evaluate the emotional responses of medical students to human cadaveric dissection, there has been no investigation into how different personality traits affect the responses. The main hypothesis tested was that there is a relationship between personality traits and attitudes toward the dissection room. For the present study, a group of French medical students (n = 403; mean age 21.3 ± 1.6; 65.3% female) completed a "Big Five" personality inventory and a questionnaire to assess their attitudes in regard to human dissection. The findings are consistent with our hypothesis, in that we found a relationship between reporting anxiety and four of the "Big Five" dimensions (all except openness). The rated level of anxiety was positively correlated with negative affectivity, more strongly at the beginning than at the end of the course. There were significant gender differences in attitudes toward dissection. The findings are discussed in relation to the possibility of preparing students for the dissecting room experience and also in relation to the students' understanding of mortality issues.  相似文献   

3.
Given the important role that anatomical dissection plays in the shaping of medical student attitudes to life and death, these attitudes have not been evaluated in the context of whole body donation for medical science. First year students of anatomy in an Irish university medical school were surveyed by questionnaire before and after the initial dissection and again after 9 weeks of anatomical dissection. Analysis of student responses to the idea of whole body donation by an unrelated stranger, a family member, or by the respondent showed that a priori attitudes to donation by a stranger did not change with exposure to dissection. However, student opposition to donation by a family member was evident immediately after the initial dissection and was sustained throughout the duration of this study. Support for the idea of donating their bodies to medical science decreased significantly among respondents after exposure to dissection (31.5% before dissection, 19.6% after dissecting for 9 weeks) but not to levels reported in the general population in other studies. This study demonstrates that where dissection forms a part of anatomy teaching, students expect to learn anatomy by dissecting donors whom they do not know. As a potential donor population, students are reluctant to become emotionally involved in the donation process and are unwilling to become donors themselves. Anat Sci Ed 1:212–216, 2008. © 2008 American Association of Anatomists.  相似文献   

4.
Innovative reforms in medical education will require instructional tools to support these changes and to give students more flexibility in where and how they learn. At Colorado State University, the software program Virtual Canine Anatomy (VCA) was developed to assist student learning both inside and outside the anatomical laboratory. The program includes interactive anatomical photographs of dissected canine cadavers, dissection instructions with accompanying videos and diagrams, radiographs, and three-dimensional models. There is a need to evaluate the effectiveness of instructional tools like VCA so that decisions on pedagogical delivery can be evidence-based. To measure the impact of VCA on student outcomes in a dissection laboratory, this study compared student attitudes, quiz scores, dissection quality and accuracy, and instructor reliance between students with and without access to VCA. Students with VCA needed less time with teaching assistants (P < 0.01), asked teaching assistants fewer questions (P = 0.04), felt that the dissection was easier (P = 0.02), and were in stronger agreement that they had access to adequate resources (P = 0.02). No differences were found in the dissection quality or accuracy, quiz scores, or attitudes regarding overall enjoyment of the activity between the two groups. This study shows that VCA increases student independence and can be used to enhance anatomical instruction.  相似文献   

5.
Cadaver dissection is the first opportunity for many students to practice handling human tissue and is their first exposure to the occupational hazards involved with this task. Few studies examine dissection room injuries to ascertain the dangers associated with dissecting. We performed a retrospective cohort analysis of dissection room injuries from four student cohorts over an eleven‐year period (2001–2011), including second‐year medical students, third‐year medical students, second‐year dental students, and third‐year science students. Injury data included activity causing injury, object responsible, and injury site. A total of 163 injuries during 70,039 hours of dissection were recorded, with 66 in third‐year medical students, 42 in second‐year medical students, 36 in third‐year science students, and 16 in second‐year dental students. The overall rate was 2.87 injuries per 1,000 dissection hours, with second‐year medical students most frequently injured (5.5 injuries per 1,000 hours); third‐year medical students were least frequently injured (1.3 injuries per 1,000 hours). A significant difference in injury rates between student groups indicated a higher than expected injury rate to second‐year medical students and lower than expected rates to third‐year medical students. Injury rates increased for most groups between 2001–2006 and 2007–2011 periods. Most injuries (79%) were from scalpel cuts to the finger or thumb. This study provides injury rates for dissection room injuries to students, indicating differences in injury frequency between cohorts and an increase in injury rate over time. As scalpel cuts were the most likely injury mechanism, targeting scalpel handling with preventative strategies may reduce future injury risk. Anat Sci Educ 6: 404–409. © 2013 American Association of Anatomists.  相似文献   

6.
The supplementation of lecture-based anatomy teaching with laboratory sessions, involving dissection or anatomical specimens, is commonly used. Hands-on dissection allows students to handle instruments correctly while actively exploring three-dimensional anatomy. However, dissection carries a potential risk of sharps and splash injuries. The aim of this study was to quantify the frequency rate of such cases per 1,000 student-hours of dissection and identify potential factors than might influence safety in anatomy laboratories. Data were retrospectively collected from September 2013 to June 2018 at the University of St Andrews, Scotland, UK. Overall, 35 sharps injuries were recorded in undergraduate medical students, with a frequency rate of 0.384 and no splash cases. A statistically significant, moderate negative association between year of study and frequency rate (rho(25) = −0.663; P < 0.001) was noted. A statistically significant difference in the frequency rate between different semester modules (χ2(4) = 13.577, P = 0.009) was observed with the difference being between Year 1 Semester 2 and Year 3 Semester 1 (P = 0.004). The decreasing trend with advancing year of study might be linked to increasing dissecting experience or the surface area of the region dissected. The following factors might have contributed to increased safety influencing frequency rates: single-handed blade removal systems; mandatory personal protective equipment; and having only one student dissecting at a given time. The authors propose that safety familiarization alongside standardized training and safety measures, as part of an evidence-based culture shift, will instill safety conscious behaviors and reduce injuries in anatomy laboratories.  相似文献   

7.
Several programs in health professional education require or are considering requiring upper-level human anatomy as prerequisite for their applicants. Undergraduate students are confronted with few institutions offering such a course, in part because of the expense and logistical issues associated with a cadaver-based human anatomy course. This study describes the development of and student reactions to an upper-level human anatomy laboratory course for undergraduate students that used a regional approach and contemporary, alternative teaching methods to a cadaver-based course. The alternative pedagogy to deliver the curriculum included use of commercially available, three-dimensional anatomical virtual dissection software, anatomical models coupled with a learning management system to offer Web-based learning, and a new laboratory manual with collaborative exercises designed to develop the student's anatomical skills and collaborative team skills. A Likert-scale survey with open-ended questions was used to ascertain student perceptions of the course and its various aspects. Students perceived that the noncadaver-based, upper-level human anatomy course with an engaging, regional approach is highly valuable in their learning of anatomy. anatomy.  相似文献   

8.
Reciprocal peer teaching (RPT), wherein students alternate roles as teacher and learner, has been applied in several educational arenas with varying success. Here, we describe the implementation of a reciprocal peer teaching protocol in a human gross anatomy laboratory curriculum. We compared the outcomes of the RPT class with those of previous classes in which RPT was not employed. Objective data (i.e., course grades) show no significant differences in gross anatomy laboratory grades between students in the RPT and non‐RPT classes. To subjectively evaluate the relative success of RPT in the laboratory, we analyzed student opinions obtained through anonymous surveys. These data show that a powerful majority of student respondents felt that RPT was beneficial and should be used in future classes. The greatest disadvantage was unreliable quality of teaching from peers; however, most students still felt that RPT should be continued. Students who felt that they had insufficient hands‐on experience (by virtue of dissecting only half the time) were significantly more likely to recommend abandoning RPT. These results underscore the importance of active student dissection, and suggest that a modified version of the described RPT protocol may satisfy more of the needs of large, diverse student populations. Several hidden benefits of RPT exist for faculty, administration, and students, including reduced need for large numbers of cadavers, attendant reduction in operating costs, and smaller student‐to‐teacher ratios. Anat Sci Educ 2:143–149, 2009. © 2009 American Association of Anatomists.  相似文献   

9.
Dissection videos are commonly utilized in gross anatomy courses; however, the actual usage of such videos, as well as the academic impact of student use of these videos, is largely unknown. Understanding how dissection videos impact learning is important in making curricular decisions. In this study, 22 dissection videos were created to review structures identified in laboratory sessions throughout the Organ Systems 1 (OS1), 2 (OS2), and 3 (OS3) courses. Dissection videos were provided to 201 first-year medical students, and viewing data were recorded. Demographic data for age and gender identity were also collected from students. Overall, there was a significant decrease in total views (P = 0.001), the number of students who pressed play (P < 0.001), and the number of students who viewed ≥ 90% of the total length of videos (P < 0.001) from OS1 to OS3. The total adjusted time spent viewing videos was not significantly different between individual OS courses. There were some instances where significant differences existed in examination performance between those who did and did not view videos, and by time spent viewing videos. There were no significant differences in time spent viewing videos by gender. Together these data suggest that students may utilize dissection videos more at the beginning of a dissection course, although they remain an important resource throughout the year for a subset of students.  相似文献   

10.
To improve student preparedness for anatomy laboratory dissection, the dental gross anatomy laboratory was transformed using flipped classroom pedagogy. Instead of spending class time explaining the procedures and anatomical structures for each laboratory, students were provided online materials to prepare for laboratory on their own. Eliminating in‐class preparation provided the opportunity to end each period with integrative group activities that connected laboratory and lecture material and explored clinical correlations. Materials provided for prelaboratory preparation included: custom‐made, three‐dimensional (3D) anatomy videos, abbreviated dissection instructions, key atlas figures, and dissection videos. Data from three years of the course (n = 241 students) allowed for analysis of students' preferences for these materials and detailed tracking of usage of 3D anatomy videos. Students reported spending an average of 27:22 (±17:56) minutes preparing for laboratory, similar to the 30 minutes previously allocated for in‐class dissection preparation. The 3D anatomy videos and key atlas figures were rated the most helpful resources. Scores on laboratory examinations were compared for the three years before the curriculum change (2011–2013; n = 242) and three years after (2014–2016; n = 241). There was no change in average grades on the first and second laboratory examinations. However, on the final semi‐cumulative laboratory examination, scores were significantly higher in the post‐flip classes (P = 0.04). These results demonstrate an effective model for applying flipped classroom pedagogy to the gross anatomy laboratory and illustrate a meaningful role for 3D anatomy visualizations in a dissection‐based course. Anat Sci Educ 11: 385–396. © 2017 American Association of Anatomists.  相似文献   

11.
Checklists have been widely used in the aviation industry ever since aircraft operations became more complex than any single pilot could reasonably remember. More recently, checklists have found their way into medicine, where cognitive function can be compromised by stress and fatigue. The use of checklists in medical education has rarely been reported, especially in the basic sciences. We explored whether the use of a checklist in the gross anatomy laboratory would improve learning outcomes, dissection quality, and students' satisfaction in the first-year Human Structure didactic block at Mayo Medical School. During the second half of a seven-week anatomy course, dissection teams were each day given a hardcopy checklist of the structures to be identified during that day's dissection. The first half of the course was considered the control, as students did not receive any checklists to utilize during dissection. The measured outcomes were scored on four practice practical examinations and four dissection quality assessments, two each from the first half (control) and second half of the course. A student satisfaction survey was distributed at the end of the course. Examination and dissection scores were analyzed for correlations between practice practical examination score and checklist use. Our data suggest that a daily hardcopy list of anatomical structures for active use in the gross anatomy laboratory increases practice practical examination scores and dissection quality. Students recommend the use of these checklists in future anatomy courses.  相似文献   

12.
Changes in medical education have affected both curriculum design and delivery. Many medical schools now use integrated curricula and a systemic approach, with reduced hours of anatomy teaching. While learning anatomy via dissection is invaluable in educational, professional, and personal development, it is time intensive and supports a regional approach to learning anatomy; the use of prosections has replaced dissection as the main teaching method in many medical schools. In our graduate‐entry medical degree, we use an integrated curriculum, with prosections to teach anatomy systemically. However, to not exclude dissection completely, and to expose students to its additional and unique benefits, we implemented a short “Dissection Experience” at the beginning of Year 2. Students attended three two‐hour anatomy sessions and participated in dissection of the clinically relevant areas of the cubital fossa, femoral triangle, and infraclavicular region. This activity was voluntary and we retrospectively surveyed all students to ascertain factors influencing their decision of whether to participate in this activity, and to obtain feedback from those students who did participate. The main reasons students did not participate were previous dissection experience and time constraints. The reasons most strongly affecting students' decisions to participate related to experience (lack of previous or new) and new skill. Students' responses as to the most beneficial component of the dissection experience were based around practical skills, anatomical education, the learning process, and the body donors. We report here on the benefits and practicalities of including a short dissection experience in a systemic, prosection‐based anatomy course. Anat Sci Educ 6: 225–231. © 2013 American Association of Anatomists.  相似文献   

13.
14.
Human anatomy education often utilizes the essential practices of cadaver dissection and examination of prosected specimens. However, these exposures to human cadavers and confronting death can be stressful and anxiety‐inducing for students. This study aims to understand the attitudes, reactions, fears, and states of anxiety that speech therapy students experience in the dissection room. To that end, a before‐and‐after cross‐sectional analysis was conducted with speech therapy students undertaking a dissection course for the first time. An anonymous questionnaire was administered before and after the exercise to understand students' feelings and emotions. State‐Trait Anxiety Inventory questionnaires (STAI‐S and STAI‐T) were used to evaluate anxiety levels. The results of the study revealed that baseline anxiety levels measured using the STAI‐T remained stable and unchanged during the dissection room experience (P > 0.05). Levels of emotional anxiety measured using the STAI‐S decreased, from 15.3 to 11.1 points (P < 0.05). In the initial phase of the study, before any contact with the dissection room environment, 17% of students experienced anxiety, and this rate remained unchanged by end of the session (P > 0.05). A total of 63.4% of students described having thoughts about life and death. After the session, 100% of students recommended the dissection exercise, giving it a mean score of 9.1/10 points. Anatomy is an important subject for students in the health sciences, and dissection and prosection exercises frequently involve a series of uncomfortable and stressful experiences. Experiences in the dissection room may challenge some students' emotional equilibria. However, students consider the exercise to be very useful in their education and recommend it. Anat Sci Educ 10: 487–494. © 2017 American Association of Anatomists.  相似文献   

15.
An innovative series of dissections of the canine abdomen was created to facilitate social distancing in the dissection room following COVID-19 restrictions imposed in the UK. In groups of six, first-year veterinary students took turns dissecting selected parts of the canine abdomen while maintaining social distancing and documenting their work with video and photographs. Here, students learned about the canine abdominal anatomy by dissecting, recording the dissections of others in their group, and compiling the recorded material into a collaborative electronic media portfolio (Wiki). An online formative multiple-choice test was created to test students' knowledge of the canine abdominal anatomy. The result analysis showed that although students achieved the learning outcomes only by studying the Wiki, they had better performance in the anatomical areas where they learned through the dissection (p < 0.05). Student performance was very similar in the areas in which they were present in the dissection room and participated in recording the dissection compared with the areas that they effectively dissected (p > 0.05). A qualitative thematic analysis was developed to understand students' opinions via their feedback on this dissection approach. Our results showed that student collaboration and the development of practical skills were the most valued aspects of this dissection teaching initiative. Moreover, these results show that developing a group Wiki has a positive impact on student achievement of learning objectives, with a practical hands-on dissection being fundamental for the optimal learning of the canine abdominal anatomy.  相似文献   

16.
The psychosocial impact of human dissection on the lives of medical and health science students has been noted. To assess the impact of the dissection room experience on one's willingness to become a whole body and organ donor, the attitudes of 1,350 students and professionals from the medical, health, and non‐health related disciplines to body and organ donation were studied. The participants were broken into categories according to degree of exposure to human dissection. Participants who were never exposed to the dissection experience showed more willingness to donate their bodies than those who were exposed. With the exception of the physiotherapy department, the students and professionals from the health science departments who were exposed to the dissection room but never engaged in dissection showed the most unwillingness to donate their bodies (P < 0.001). An unwillingness to donate oneself was noted as one of the negative impacts associated with exposure to the dissection room. Willingness to donate an organ correlated positively with the level of exposure to the dissection room (P < 0.001). Most of the reasons for unwillingness were traceable to negative perceptions of the dissection room as a result of poor and disrespectful management of the human cadavers. Anat Sci Educ. 7: 56–63. © 2013 American Association of Anatomists.  相似文献   

17.
Cadaver dissection is a key component of anatomy education. Unfortunately, students sometimes regard the process of dissection as uninteresting or stressful. To make laboratory time more interesting and to encourage discussion and collaborative learning among medical students, specially designed tasks were assigned to students throughout dissection. Student response and the effects of the tasks on examination scores were analyzed. The subjects of this study were 154 medical students who attended the dissection laboratory in 2009. Four tasks were given to teams of seven to eight students over the course of 2 weeks of lower limb dissection. The tasks were designed such that the answers could not be obtained by referencing books or searching the Internet, but rather through careful observation of the cadavers and discussion among team members. Questionnaires were administered. The majority of students agreed that the tasks were interesting (68.0%), encouraged team discussion (76.8%), and facilitated their understanding of anatomy (72.8%). However, they did not prefer that additional tasks be assigned during the other laboratory sessions. When examination scores of those who responded positively were compared with those who responded neutrally or negatively, no statistically significant differences could be found. In conclusion, the specially designed tasks assigned to students in the cadaver dissection laboratory encouraged team discussion and collaborative learning, and thereby generated interest in laboratory work. However, knowledge acquisition was not improved.  相似文献   

18.
This paper details the creation of a human gross anatomy laboratory from a defunct chemistry laboratory at West Liberty University, a small primarily undergraduate institution in West Virginia. The article highlights important considerations with regard to the development of a human gross anatomy laboratory including access to human gifts; assessment of the space for size, security, and privacy; assessment of the utilities; acquisition of a dissection table; ventilation; aesthetics in functional design; expenses; and sustainability. The report also identifies favorable conditions and potential pitfalls regarding the creation of a human gross anatomy laboratory. This paper demonstrates that a human gross anatomy laboratory can be created quickly and at little expense.  相似文献   

19.
20.
Self‐efficacy is defined as a person's beliefs in his or her own abilities to successfully complete a task and has been shown to influence student motivation and academic behaviors. More specifically, anatomical self‐efficacy is defined as an individual's judgment of his or her ability to successfully complete tasks related to the anatomy curriculum; these include dissecting, learning anatomical concepts, and applying anatomical knowledge to clinical situations. The purpose of this study was to investigate the influence of anatomical self‐efficacy on the academic performance of students enrolled in a medical gross anatomy course. To obtain students' anatomical self‐efficacy ratings, surveys containing the same anatomical self‐efficacy instrument were completed by first‐year medical students at a southeastern United States allopathic medical school after each of four gross anatomy assessments. Additional data collected included student demographic information, Medical College Admission Test® (MCAT®) scores, and anatomy assessment scores, both written examination and laboratory practical. To investigate the potential predictive nature of self‐efficacy for academic performance on both the written examination and the laboratory practical components of medical anatomy assessments, hierarchical linear regression analyses were conducted. For these analyses, academic ability (defined as the sum of the physical sciences and biological sciences MCAT scores) was controlled. The results of the hierarchical linear regressions indicated that all four laboratory practical scores were predicted by the corresponding self‐efficacy ratings, while two (i.e., thorax/abdomen and pelvis/lower limb) of the four written examination scores were predicted by the corresponding self‐efficacy ratings (P ≤ 0.05). Anat Sci Educ. © 2012 American Association of Anatomists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号