首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, stability analysis of linear time-varying neutral delay systems is considered. A necessary and sufficient condition for delay-independent global asymptotic stability of such systems is derived. Eventually, two examples are given in order to show the results established.  相似文献   

2.
This paper is concerned with the simultaneous exponential stabilization problem for a set of stochastic port-controlled Hamiltonian (PCH) systems. Due to the limited bandwidth of the channels, the phenomena of fading channels and transmission delays which are described by a time-varying stochastic model always occur in the communication channels from the controller to the actuator. Meanwhile, actuator saturation constraint is taken into account. On the basis of dissipative Hamiltonian structural and saturating actuator properties, those stochastic PCH systems are combined to generate an augmented system. By utilizing the stochastic analysis theory, sufficient criterions are given for the simultaneous stabilization controller design ensuring that the closed-loop system is simultaneously exponentially mean-square stable (SEMSS). For the case that there exist external disturbances in the systems, some results on stability analysis and controller design are given. The developed controller design scheme is proved by a three-helicopter model simulation example.  相似文献   

3.
In this paper, containment control problems of networked fractional-order multi-agent systems with time-varying delays are studied. The normalized directed graphs are employed to characterize the communication topologies. Two sampled-data based containment control protocols are proposed, which can overcome the time-varying delays and switching topologies. It is interestingly found that the decays of the closed-loop systems correspond to the Mittag-Leffler function and its approximation, which are the extensions of the exponential function and its approximation, respectively. Based on the algebraic graph theory, the properties of row-stochastic matrix, and the relation between the topologies and the matrices, some conditions for containment control are established. For the fixed topology, a necessary and sufficient condition is obtained; and for the switching topology, a sufficient condition is provided. Finally, the theoretical results are illustrated by several numerical simulations.  相似文献   

4.
In this paper, the problem of hybrid control strategy (HCS) for time-varying delay positive switched linear systems (PSLS) with unstable modes is studied. Firstly, the HCS, which includes minimum switching strategy and discretized state feedback controller, is applied to PSLS with time-varying delay for the first time. Secondly, by using the discretized multiple linear copositive Lyapunov-Krasovskii functional, a sufficient condition of globally uniformly asymptotically stable (GUAS) under the HCS is given. Finally, the HCS is extended to discrete-time positive switched time delay systems, and a delay independent stabilization condition is obtained in the discrete system. The effectiveness of the HCS is verified by two simulation examples.  相似文献   

5.
《Journal of The Franklin Institute》2022,359(17):10017-10037
This paper investigates the positivity and stability of discrete-time coupled homogeneous systems with time-varying delays. First, an explicit criterion is given for the positivity of discrete-time coupled homogeneous delay systems. Then, by using the properties of homogeneous functions, a sufficient condition is presented for ensuring the stability of the considered systems. Moreover, the obtained result is applied to study the stability of positive singular systems with time-varying delay. It should be noted that it is the first time that the stability result is given for discrete-time coupled homogeneous positive systems with time-varying delays. Two numerical examples are presented to demonstrate the effectiveness of the derived results.  相似文献   

6.
In this paper, we give the necessary and sufficient conditions for a function f to be a lower Bohl function of a diagonal discrete linear time-varying systems.  相似文献   

7.
This paper deals with the problems of robust delay-dependent stability and H analysis for Markovian jump linear systems with norm-bounded parameter uncertainties and time-varying delays. In terms of linear matrix inequalities, an improved delay-range-dependent stability condition for Markovian jump systems is proposed by constructing a novel Lyapunov-Krasovskii functional with the idea of partitioning the time delay, and a sufficient condition is derived from the H performance. Numerical examples are provided to demonstrate efficiency and reduced conservatism of the results in this paper.  相似文献   

8.
本文研究了一类具有关联延迟和系统参数不确定的非线性大系统的分散控制问题,系统的匹配/非匹配不确定参数范数有界。首先基于状态观测器设计时延独立的动态输出反馈控制律,并根据 稳定性理论推导并证明了在该控制律作用下系统稳定的充分条件。最后给出一个数值例子来说明本文结果的可行性,仿真结果表明设计出的控制器不仅使得闭环系统稳定而且保证系统不受参数不确定和时延的影响。  相似文献   

9.
This paper is concerned with the problem of finite-time stability analysis of linear discrete-time systems with time-varying delay. The time-varying delay has lower and upper bounds. By choosing a novel Lyapunov–Krasovskii-like functional, a new sufficient condition is derived to guarantee that the state of the system with time-varying delay does not exceed a given threshold during a fixed time interval. Then, the corresponding corollary is developed for the case of constant time delay. Numerical examples are provided to demonstrate the effectiveness and merits of the proposed method.  相似文献   

10.
This paper considers the simultaneous stabilization of a set of nonlinear systems, that involve uncertain nonlinearities besides multiple time-varying delays in the states. Under the assumption that the upper bounds of delays are known, a memoryless simultaneously stabilizing state feedback controller is presented by proposing a control Lyapunov-Krasovskii functional (CL-KF) method. As required to establish the CL-KF approach, a systematic procedure is given to construct CL-KFs for the systems under consideration. By the obtained CL-KFs, a common stabilizing state feedback control law is established to drive all the systems to the origin. Examples are finally given to verify the benefit of the proposed design method.  相似文献   

11.
This paper is concerned with the problems of finite-time boundedness and finite-time control for positive coupled differential-difference equations (CDDEs) with bounded time-varying delay. The finite-time stability of such systems is analyzed by constructing an estimate of the solutions over a finite time interval. And, sufficient conditions based on linear programming (LP) are provided for finite-time stability of positive CDDEs with bounded time-varying delay. Then, by coordinate transformation, the obtained results are extended to the finite-time bounedness of positive CDDEs with bounded time-varying delay. By the obtained result of finite-time boundedness, static output-feedback controllers and static state-feedback controllers are designed and a sufficient condition is derived to ensure the positivity and finite-time boundedness of closed-loop system. Three illustrative examples are given to show the validity of our results.  相似文献   

12.
This paper investigates the problem of stability and state-feedback control design for linear parameter-varying systems with time-varying delays. The uncertain parameters are assumed to belong to a polytope with bounded known variation rates. The new conditions are based on the Lyapunov theory and are expressed through Linear Matrix Inequalities. An alternative parameter-dependent Lyapunov-Krasovskii functional is employed and its time-derivative is handled using recent integral inequalities for quadratic functions proposed in the literature. As main results, a novel sufficient stability condition for delay-dependent systems as well as a new sufficient condition to design gain-scheduled state-feedback controllers are stated. In the new proposed methodology, the Lyapunov matrices and the system matrices are put separated making it suitable for supporting in a new way the design of the stabilization controller. An example, based on a model of a real-world problem, is provided to illustrate the effectiveness of the proposed method.  相似文献   

13.
This paper studies the finite-time stability and stabilization of linear discrete time-varying stochastic systems with multiplicative noise. Firstly, necessary and sufficient conditions for the finite-time stability are presented via a state transition matrix approach. Secondly, this paper also develops the Lyapunov function method to study the finite-time stability and stabilization of discrete time-varying stochastic systems based on matrix inequalities and linear matrix inequalities (LMIs) so as to Matlab LMI Toolbox can be used.The state transition matrix-based approach to study the finite-time stability of linear discrete time-varying stochastic systems is novel, and its advantage is that the state transition matrix can make full use of the system parameter informations, which can lead to less conservative results. We also use the Lyapunov function method to discuss the finite-time stability and stabilization, which is convenient to be used in practical computations. Finally, three numerical examples are given to illustrate the effectiveness of the proposed results.  相似文献   

14.
In this paper, the impulsive average-consensus problem of first-order multi-agent systems with dynamically changing topologies is investigated. Continuous-time dynamics and impulsive protocols are both subjected to effects from nonuniform time-varying communication delays. By utilizing Razumikhin techniques and time-varying Lyapunov function method, some impulse-delay-dependent sufficient criteria for the average-consensus of multi-agent systems are derived. In addition, the discrete-time connection digraph is designed in terms of linear matrix inequalities for given impulsive sequences and some programming skills are used to make the discrete-time topology meet the needs of the actual environment. Numerical simulations are given to illustrate the effectiveness and validity of the theoretical results.  相似文献   

15.
In this paper, we deal with the cooperative output regulation problem of linear multi-agent systems on a directed network topology subject to both stochastic packet dropout and time-varying communication delay. On the basis of introducing a queuing mechanism, a distributed state feedback control algorithm is proposed. Then the continuous-time multi-agent systems with piece-wise constant control are converted into discrete-time systems. Under some standard assumptions, the necessary and sufficient conditions under which the tracking errors of followers approach to the origin asymptotically are proposed for different exosystems. Finally, the proposed results are verified via two examples.  相似文献   

16.
In practice, many controlled plants are equipped with MIMO non-affine nonlinear systems. The existing methods for tracking control of time-varying nonlinear systems mostly target the systems with special structures or focus only on the control based on neural networks which are unsuitable for real-time control due to their computation complexity. It is thus necessary to find a new approach to real-time tracking control of time-varying nonlinear systems. In this paper, a control scheme based on multi-dimensional Taylor network (MTN) is proposed to achieve the real-time output feedback tracking control of multi-input multi-output (MIMO) non-affine nonlinear time-varying discrete systems relative to the given reference signals with online training. A set of ideal output signals are selected by the given reference signals, the optimal control laws of the system relative to the selected ideal output signals are set by the minimum principle, and the corresponding optimal outputs are taken as the desired output signals. Then, the MTN controller (MTNC) is generated automatically to fit the optimal control laws, and the conjugate gradient (CG) method is employed to train the network parameters offline to obtain the initial parameters of MTNC for online learning. Addressing the time-varying characteristics of the system, the back-propagation (BP) algorithm is implemented to adjust the weight parameters of MTNC for its desired real-time output tracking control by the given reference signals, and the sufficient condition for the stability of the system is identified. Simulation results show that the proposed control scheme is effective and the actual output of the system tracks the given reference signals satisfactorily.  相似文献   

17.
In this paper, we investigate the static output-feedback stabilization problem for LTI positive systems with a time-varying delay in the state and output vectors. By exploiting the induced monotonicity, necessary and sufficient conditions ensuring exponential stability of the closed-loop system are first quoted. Based on the derived stability conditions, necessary and sufficient stabilization conditions are formulated in terms of matrix inequalities. This general setting is then transformed into suitable vertex optimization problems by which necessary and sufficient conditions for the existence of a desired static output-feedback controller are obtained. The proposed synthesis conditions are presented in the form of linear programming conditions, which can be effectively solved by various convex algorithms.  相似文献   

18.
This paper is concerned with the robust sliding mode control (SMC) problem for a class of uncertain discrete-time Markovian jump systems with mixed delays. The mixed delays consist of both the discrete time-varying delays and the infinite distributed delays. The purpose of the addressed problem is to design a sliding mode controller such that, in the simultaneous presence of parameter uncertainties, Markovian jumping parameters and mixed time-delays, the state trajectories are driven onto the pre-defined sliding surface and the resulting sliding mode dynamics is stochastically stable in the mean-square sense. A discrete-time sliding surface is firstly constructed and an SMC law is synthesized to ensure the reaching condition. Moreover, by constructing a new Lyapunov–Krasovskii functional and employing the delay-fractioning approach, a sufficient condition is established to guarantee the stochastic stability of the sliding mode dynamics. Such a condition is characterized in terms of a set of matrix inequalities that can be easily solved by using the semi-definite programming method. A simulation example is given to illustrate the effectiveness and feasibility of the proposed design scheme.  相似文献   

19.
In this paper, a new memory-based control problem is addressed for neutral systems with time-varying delay, input saturations and energy bounded disturbances. Attention is focused on the design of a memory-based state feedback controller such that the closed-loop system achieves the desirable performance indices including the boundedness of the state trajectories, the H disturbance rejection/attenuation level as well as the asymptotic stability. By using the combination of a novel delay-dependent polytopic approach, augmented Lyapunov–Krasovskii functionals and some integral inequalities, delay-dependent sufficient conditions are first proposed in terms of linear matrix inequalities. Then, three convex optimization problems are formulated whose aims are to, respectively, maximize the disturbance tolerance level, minimize the disturbance attenuation level and maximize the initial condition set. Finally, simulation examples demonstrate the effectiveness and benefits of the obtained results.  相似文献   

20.
This paper investigates the stability robustness of linear output feedback systems with both time-varying structured (elemental) and unstructured (norm-bounded) parameter uncertainties as well as delayed perturbations by directly considering the mixed quadratically coupled uncertainties in the problem formulation. Based on the Lyapunov approach and some essential properties of matrix measures, two new sufficient conditions are proposed for ensuring that the linear output feedback systems with delayed perturbations as well as both time-varying structured and unstructured parameter uncertainties are asymptotically stable. The corresponding stable region, that is obtained by using the proposed sufficient conditions, in the parameter space is not necessarily symmetric with respect to the origin of the parameter space. Two numerical examples are given to illustrate the application of the presented sufficient conditions, and for the case of only considering both the delayed perturbations and time-varying structured parameter uncertainties, it can be shown that the results proposed in this paper are better than the existing one reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号