首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
具有圆的几何意义的数学问题,如能构造出该圆,那么问题便会迎刃而解,请看: 一、求值例1 已知sinα+sinβ+sinγ=0,cosα+cosβ+cosγ=0,求cos2α+cos2β+cos2γ的值. 解:构造一直角坐标系,设三点P(cosα,sinα)、Q(cosβ,sinβ)、R(cosγ,sinγ),由给  相似文献   

2.
题若α,β,γ∈R,求u=sin(α-β) sin(β-γ) sin(γ-α)的最大值和最小值.在本刊2006年第1期第40页上,应用4元均值不等式给出了该题的一种初等解法,其实,逆向利用行列式,可以给出该问题的一种巧思妙解.解u=sinαcosβ sinβcosγ sinγcosα-cosαsinβ-cosβsinγ-cosγsinα=sinαcosα1sinβcosβ1sinγcosγ1,构造点A(sinα,cosα),B(sinβ,cosβ),C(sinγ,cosγ),则|u|=2S△ABC. 1很明显,上面的三点A、B、C都在单位圆:x2 y2=1上.因为圆内接三角形,以正三角形的面积为最大,所以当△ABC为正三角形时,S△ABC取得最大值343,于是|u…  相似文献   

3.
本刊91年第1期《三角函数式的恒等变换与应用》一文的一例及其解答如下: 例12 已知(tg(α+β-γ))/(tg(α-β+γ))=tgγ/tgβ,求证sin2α+sin2β+sin2γ=0 证明:把已知化为 (sin(α+β-γ)cos(α+β-γ))/(cos(α+β-γ)sin(α+β-γ))=sinγcosβ/cosγsinβ由合分比定理,化简得 (sin2α)/(sin2(β-γ))=(sin(γ+β))/(sin(γ-β))  相似文献   

4.
参考公式:三角函数的积化和差公式sinαcosβ=12[sin(α+β)+sin(α-β)]cosαsinβ=12[sin(α+β)-sin(α-β)]cosαcosβ=12[cos(α+β)+cos(α-β)]sinαsinβ=-12[cos(α+β)-cos(α-β)]正棱台、圆台的侧面积公式S台侧=12(c′+c)l其中c′,c分别表示上、下底面周长,l表示斜高或母线长球体的表面积公式:S球=4πR2其中R表示球的半径一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)(理)设全集是实数集R,M={x|-2≤x≤2},N={x|x<1},则M∩N等于()A.{x|x<-2}B.{x|-2相似文献   

5.
一、构造函数例1设α、m为常数,θ是任意实数,求证:眼cos(θ+α)+mcosθ演2≤1+2mcosα+m2.证明构造函数y=f(θ)=1+2mcosα+m2-眼cos(θ+α)+mcosθ演2,则只需证明y≥0即可.f(θ)=sin2(θ+α)+2m眼cosα-cosθcos(θ+α)演+m2sin2θ.令sin(θ+α)=x,则得二次函数y=x2+2msinθ·x+m2sin2θ.由于Δ=4m2sin2θ-4m2sin2θ=0,且二次项系数为1,故y≥0,即原不等式成立.二、构造数列例2已知:sinφcosφ=60169,π4<φ<π2,求sinφ、cosφ的值.解由题意可知,sinφcosφ=(215姨13)2且sinφ>cosφ,构造等比数列cosφ,215姨13,sinφ.设sinφ=215姨13·q,c…  相似文献   

6.
一、问题的提出 看这样一个数学问题:若sinαcosβ=1/2,求cosαsinβ的取值范围. 一个典型的错误解法是: 解:因为sin(α+β)=(sinαcosβ+cosαsinβ)∈[-1,1],sinαcosβ=1/2,所以-3/2≤cosαsinβ≤1/2. 它的错误原因在于找到的约束条件不全面,仅考虑了-1≤sin(α+β)≤1.许多参考书上给出的正确的解法是: 解:因为sin(α+β)=(sinαcosβ+cosαsinβ)∈[-1,1],sinαcosβ=1/2,所以-3/2≤cosαsinβ≤1/2, 因为sin(α-β)=sinαcosβ-cosαsinβ=(1-cosαsinβ) ∈[-1,1].  相似文献   

7.
一、对于含有代数式a2-x2√的函数或方程,可设x=acosα(0≤α≤π)或x=asinα(-π2≤α≤π2).例1已知x1-y2√+y1-x2√=1,求u=x+y的取值范围.解由题意可知0≤x≤1,0≤y≤1,不妨设x=cosα,y=cosβ(0≤α≤π2,0≤β≤π2),代入已知条件中得cosα1-cos2β√+cosβ1-cos2α√=1,即sin(α+β)=1.∵0≤α≤π2,0≤β≤π2,0≤α+β≤π,∴α+β=π2,β=π2-α,∴u=x+y=cosα+cosβ=cosα+cos(π2-α)=cosα+sinα=2√sin(α+π4).∵π4≤α+π4≤34π,2√2≤sin(α+π4)≤1,即1≤2√sin(α+π4)≤2√,∴u=x+y的取值范围是犤1,2√犦.二、对于含有…  相似文献   

8.
三角问题几何来处理,这样做能加强知 识之间横向联系,有利于培养学生类比思维 能力,提高学生创新能力. 关于sinα+sinβ=2sinα+β2cosα-β2, cosα+cosβ=2cosα+β2cosα-β2的证明. 在直角坐标系中,把α、β顶点放在原点, 始边与x轴非负半轴重合,α、β终边与单位 圆分别交于A、B两点,所以A(cosα,sinα)、 B(cosβ,sinβ),取点M(1,0),记AB中点为 P,过P作x轴垂线,垂足为E,由中点坐标公 式得sinα+sinβ=2ypcosα+cosβ=2xp 当α、β∈[0,2π]时,∴0≤|α-β|≤ 2π. 1.若|α-β|=0,π、2π时和差化积公 式转化为诱…  相似文献   

9.
第 31届西班牙数学奥林匹克第 2题是 :证明 :如果 ( x+ x2 + 1 ) ( y+ y2 + 1 )= 1 ,那么 x+ y=0 .文 [1 ]给出了此题的一种证法 ,本文再给出此题的两种换元证法 ,然后给出一个新命题 .证法 1 设 x=tanα,y=tanβ,其中 α,β∈ ( - π2 ,π2 ) ,则由条件知 ,( tanα+ secα) ( tanβ+ secβ) =1 ( sinα+ 1 ) ( sinβ+ 1 ) =cosαcosβ sinα+sinβ+ 1 =cos(α+β) 2 sinα+β2 cosα-β2 +1 =1 - 2 sin2 α+β2 sin α+β2 ( sin α+β2 +sinπ-α+β2 ) =0 sin α+β2 sin 2β+π4 ·cos2α-π4 =0 .又由 α,β∈ ( - π2 ,π2 ) ,知…  相似文献   

10.
三角代换巧解不等式问题,即根据题目的特点,选取恰当的三角代换,能达到化难为易,化繁为简的目的,它是解不等式问题常用的方法,现举例说明. 例1 已知a,b,x,y∈R,且a2 +b2=1,x2+y2=1,求ax+ by的范围. 解:通过观察已知条件我们不难发现:令{a=sinα,b=cosα,{x=sinβ,y=cosβ,则ax+by=sinαsinβ+cosαcosβ=cos(α-β).  相似文献   

11.
三角函数的求值是历年来高考命题的热点,每年都有新题型出现,因此,显得尤为重要.下面是一道常规的三角函数求值问题,从不同的角度去思考,可以得到不同的解法.例设α和β都是锐角,且满足3sin2α+2sin2β=1,3sin2α-2sin2β=0,求sin(α+2β)的值.分析1:要求sin(α+2β)的值,须先求出sinα、cosα、sin2β、cos2β的值.解法1:由二倍角余弦公式sin2α=1-c2os2α,sin2β=1-c2os2β,可得3·1-c2os2α+1-cos2β=1,即3cos2α+2cos2β=3,所以cos2α=1-32cos2β.①又由已知条件得sin2α=32sin2β.②①2+②2得1=1-43cos2β+94(cos22β+sin22β),即34cos…  相似文献   

12.
对于某些三角问题 ,若能合理地构造向量 ,利用向量来解 ,往往可使问题得到快捷方便地解决 ,下面举例说明 .一、求角度【例 1】 若α、β∈ ( 0 ,2 ) ,求满足cosα+cosβ-cos(α + β) =32 的α ,β的值 .解 :原等式化为( 1 -cosβ)cosα+sinβsinα =32 -cosβ ①构造向量a =( 1 -cosβ ,sinβ) ,b =(cosα ,sinα) ,则a·b =( 1 -cosβ)cosα+sinβsinα=32 -cosβ ,|a|·|b|= ( 1 -cosβ) 2 +sin2 β· cos2 α+sin2 α= 2 -2cosβ因 (a·b) 2 ≤|a|2 ·|b|2 ,于是有 ( 32 -cosβ) 2 ≤ 2 -2cosβ整理得 (cosβ-12 ) 2 ≤ 0 ,∴c…  相似文献   

13.
解析几何的本质是用代数方法研究几何问题,而三角可以实现几何特征与代数运算的有效转化,因此解析几何中的三角问题俯拾即是:一、以三角为工具,用三角的一整套变换公式,求解圆锥曲线的特征变量【例1】设P是椭圆x2a2+y2b2=1(a>b>0)上任意一点,F1、F2是椭圆的焦点,∠PF1F2=α,∠PF2F1=β,求椭圆的离心率e.解:由正弦定理得|PF1|sinβ=|PF2|sinα=|F1F2|sin(π-α-β),∴|PF1|+|PF2|sinα+sinβ=|F1F2|sin(α+β),即2asinα+sinβ=2csin(α+β),而e=ca,∴e=sin(α+β)sinα+sinβ=2sinα+β2cosα+β22sinα+β2cosα-β2=cosα+β2cos…  相似文献   

14.
参考公式三角函数的积化和差公式sinαcosβ=(1/2)[sin(α+β)+sin(α-β)],cosαsinβ=(1/2)[sin(α+β)-sin(α-β)], cosαcosβ=(1/2)[cos(α+β)+cos(α-β)],sinαsinβ=(1/2)[cos(α+β)-cos(α-β)]. 正棱台、圆台的侧面积公式:  相似文献   

15.
正题目已知α,β,γ∈(0,π/2),且sin~2α+sin~2β+sin~2γ=1,求sinα+sinβ+sinγ/cspα+cosβ+cosγ的最大值.这是一道第三届世界数学锦标赛(青年组)团体赛的第8题,本文先给出问题的解,然后从一题多变的角度给出问题的多种变式,给同学们参考.  相似文献   

16.
一、借用方程解三角函数求角题把角视为“元”,关键是建立以角为元的三角方程,然后解此方程.例1已知α缀(0,仔),β缀(0,仔),cosα+cosβ-cos(α+β)=32,求α,β.解析(解法一)本题难点在于用一个等式如何求出两个未知量.用方程的观点去分析,通过配方,利用平方数性质,可得一个方程组.由cosα+cosβ-cos(α+β)=32,得2cosα+β2cosα-β2-2cos2α+β2+1=32,即4cos2α+β2-4cosα+β2cosα-β2+1=0,配方得(2cosα+β2-cosα-β2)2+sin2α-β2=0,∴sinα-β2=0,①2cosα+β2-cosα-β2=0.②由①式结合α缀(0,仔),β缀(0,仔),得α=β.代入②式得co…  相似文献   

17.
一、三角函数取值范围的方程求法我们知道在sin~2a+cos~2α=·1中,运用换元,令cosα=x,sinα=y,就是x~2+y2=1.这样就可把求t=F(cosα,sinα)的范围化为在方程组{x~2+y~2}=1F(x,y)=t},中求t的取值范围.例1已知sinαcosβ=1/2,求t=cosαsi的取值范围.解令cosα=x,sinα=y,cosβ=m,sinβ=n,得方程组(?)消去m,n,y(过程略)得4x~4-(4t~2+3)x~2+4t~2=0(0≤x~2≤1)⑤在⑤中解出t~2求值域或解出x~2求定义域或用二次方程实根的分布方法可得0≤t2≤1/4,所以一1/2≤t≤1/2.例2已知sinα+sinβ=1,求t=cosαt+cosβ的取值  相似文献   

18.
向量作为一种工具在解题中的应用极广,巧用公式a·b≤a·b解题,方法新颖、运算简捷.本文举例说明该公式的应用.1在求值中的应用例1若α,β∈(0,π),求满足等式cosα+cosβ-cos(α+β)=23的α,β的值.解原等式可化为(1-cosβ)cosα+sinβsinα=32-cosβ.构造向量a=(1-cosβ,sinβ),b=(cosα,sinα),则a·b=(1-cosβ)2+sin2β·cos2α+sin2α=2-2cosβ,a·b=(1-cosβ)cosα+sinβsinα=32-cosβ.因为(a·b)2≤a2b2,所以(23-cosβ)2≤2-2cosβ,即(cosβ-12)2≤0,所以cosβ=21,β=3π.又α,β地位相同,故α=3π,即α=β=3π.2在求最值和值域中的…  相似文献   

19.
公式“sin2α+cos2α=1”是高中三角函数问题中一个十分重要的公式,它是同角三角函数基本关系式之一,具有十分广泛的应用.在解决三角问题时,如能活用该公式,充分挖掘其潜在功能,往往可以推陈出新,给人以耳目一新的感觉.一、三角函数式的化简例1化简1-sin6α-cos6αsin2α-sin4α.解1-sin6α-cos6αsin2α-sin4α=1sin2αcos2α-sin2α+cos2αsin2αcos2α×(sin2α+cos2α)2-3sin2αcos2αsin2αcos2α=1-(1-3sin2αcos2α)sin2αcos2α=3.二、用公式求值例2已知sinθ+cosθ=15,θ(0,π),则cotθ=_____.解∵sin2θ+cos2θ=1,∴(sinθ+cos…  相似文献   

20.
有这样一道习题:已知sin2a+sinβ+cos(α-β)=2,求sina+sinβ的取值范围. 错解:令u=sinα+sinβ,则u2=sin2α+sin2β+2sinαsinβ又sin2α+sin2β+cos(α-β)=2,所以U2-2=2sinαsinβ-cos(α-β)=-cos(α+β).u2=2-cos(α+β),从而1≤u2≤3,解得-3~(1/2)≤u≤一1或1≤u≤3~(1/2). 这个答案看起来似乎简洁明了,分析透彻,但细细分析便会产生这样的疑问,即cos(α+β)能取[一1,1]上的所有值吗?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号