首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在Rt△ABC中,CD为斜边AB上的高,O_1,O_2分别为Rt△ACD和Rt△CDB的内心(如图1)。 这是一个简单图形,它有较多有趣的性质。 性质1 在图1中连CO_1,CO_2(如图2),则∠O_1C)_2=45°。 证略。 性质2 在图1中,设CO_1,CO_2分别交AB于P,Q(如图3),则AQ=AC,PB=CB。 证明 如图3,由CD是Rt△ABC的斜边AB上的高,有∠DCB=∠A,∠ACD=  相似文献   

2.
666.在Rt△ABC中,CD是斜边上的高,记 I1、I2、I分别是△ADC、△BCD、△ABC的内心,I在AB上的射影为O1,∠CAB、∠ABC 的平分线分别交BC、AC于P、Q,PQ的连线与CD相交于O2.求证:四边形I1O1I2O2为正方形.证:如图1,不妨设BC≥AC.由题设,有 Rt△ADC∽ Rt△CDB,所以AC/BC=I1D/I2D,又∠I1DI2=90°=∠ACB,从而Rt△DI1I2∽ Rt△CAB,∠I2I1D=∠CAB…………………①  相似文献   

3.
1979年,首次全国中学数学竞赛二试的题六是:如图1,两圆O1,O2相交于点A,B,圆O1的弦BC交圆图1O2于点D,圆O2的弦BF交圆O1于点E,证明:(1)若∠CBA=∠FBA,则CD=EF;(2)若CD=EF,则∠CBA=∠FBA.证明连接AC,AD,AE,AF,则∠ACD=∠ACB=∠AEF,∠ADC=∠AFB=∠AFE,而有△ACD∽△AEF,从而有ACAE=CDEF,于是CD=EFAC=AE)AC=)AE∠CBA=∠FBA.  相似文献   

4.
三角形全等是几何的基础知识,判定三角形全等应注意以下几点.1.要注意“边角边”公理中的角是指两条对应边的夹角.例1如图1,BC=CD,∠B=∠ACD,试问△ABC和△ACD是否全等.有些同学说是全等并这样证明:在△ABC和△ACD中,∵AC=AC(公共边),∠B=∠ACD(已知),BC=CD(已知),∴△ABC≌△ACD.上述证明是错误的,因为∠B不是AC和BC的夹角,故这两个三角形不一定全等.评注:例1说明,在判定三角形全等时,要注意判定条件的顺序性.如在例1的△ACD和△ABC中,其条件分别是“SAS”与“SSA”,即条件是分别相等,并非对应相等.2.要注意分清“角…  相似文献   

5.
错在哪里     
题 已知:如图∠ABC=∠CDB=90°,AC=a,BC=b,当BD与a、b之间满足怎样的关系时,△ABC∽△CDB? (《几何》第二册第231页例4) 解 ∵∠ABC=∠CDB=90°, ∴ 当AC/BC=BC/BD时,△ABC∽△CDB。 即 a/b=b/BD,BD=b~2/a。 答:当BD=b~2/a时,△ABC∽△CDB。  相似文献   

6.
三角形全等的证明是几何证题中的重要内容.证三角形全等,可用来证明两线段相等,两角相等,两直线垂直等等.如何准确、迅速地探求出从已知条件到达求证结论的证明途径呢?下面通过实例来谈谈探求证明途径的基本思路.例1已知:如图1,A、B、C三点在一条直线上,△ACD和△BCE都是等边三角形.求证:AE=DB.分析从△ACD是等边三角形,可得AC=DC,∠BCD=60°,同理,EC=BC,∠ECA=60°.欲证AE=DB,只需图1证△BCD≌△ECA.证明∵△ACD是等边三角形,∴AC=DC,∠BCD=60°.同理,EC=BC,∠ECA=60°.在△ECA和△BCD中,∵AC=DC,∠ECA=∠BC…  相似文献   

7.
在△ ABC中 ,∠ C=90°,CD⊥ AB于 D,AM是∠ BAC的平分线 ,交 CD于 E,交 BC于 M,过E作 EF∥ AB交 BC于 F。求证 :CM=BF。证法一 :(运用三角形知识 )证明 :过 M作 MN⊥ AB于点 N。∵∠ 1=∠ 2 ,易证△ ACM≌△ ANM,∴CM=MN。  ( 1)又 CD⊥ ABMN⊥ AB CD∥ MN, ∠ 3=∠ 5∠ 4 =∠ 5 ∠ 3=∠ 4 CE=CM。  ( 2 )由 ( 1)、( 2 )得 CE=MN。在 Rt△ EFC和 Rt△ NBM中 ,EF∥ AB ∠ B=∠ CFE,∠ CEF=∠ MNB,CE=MN Rt△ EFC≌ Rt△ NBM,∴ CF=BM,∴ CM=BF。  证法二 :(运用四边形知识 )证明 :过 M…  相似文献   

8.
原题已知AB=AC,CD⊥AB于点D,BE上AC于点E,BE与CD相交于点O,(1)求证:AD=AE.(2)连接OA、BC,试判断直线OA、BC的位置关系并说明理由.提供的标准答案:(1)证明:如图1中,在△ACD与△ABE中,∵.∠ADC=∠A EB=90°,∠A=∠A,AC=AB,∴△ACD≌△ABE.∴AD=AE.(2)互相垂直;证明连接OA、BC,如图2,在Rt△ADO与Rt△AEO中,  相似文献   

9.
探索:将一个三角形沿着一条中线剪开,得两个面积相等的三角形.如图1,沿中线AD将△ABC剪开,得△ABD和△ACD,有S△ABD=S△ACD.再研究一下这两个三角形的边与角,发现AD=AD,BD=CD,∠ADB+∠ADC=180°.猜想:如果两个三角形的边与角之间满足上述条件,这两个三角形面积相等吗?如图2,在△ABC和△A'B'C中,BC=B'C'=a,AC=A'C'=b,∠ACB+∠A'C'B'=180°.我们试将这两个三角形拼合,使A'C'与AC重合.∵∠ACB+∠A'C'B'=180°,∴B'在BC的延长线上.又∵BC=B'C',∴C是△ABB'的边BB'的中点.∴S△ABC=S△A'B'C'.(等底等高)这说明…  相似文献   

10.
1原题呈现(安徽23题)如图1,Rt△ABC中,∠ACB=90°,AC=BC.P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△PAB∽△PBC;(2)求证:PA=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证:h12=h2·h3.  相似文献   

11.
一、直接寻求相关相似三角形例1从直角三角形ABC的斜边AB的中点D引AB的垂线,分别与AC和BC的延长线交于E、F点,求证:CD2=DE·DF.分析:要证CD2=DE·DF,即证CDDE=DFCD,对照图1,易看出只要证C、D、E三点和C、D、F三点分别对应的三角形相似即可,即证△CDE∽△CDF。为此,还需证另一对角相等,易知∠A=∠F,而∠A=∠ACD,所以,∠F=∠ECD,得证。二、先寻找相等线段,替换求证式中的一条或两条线段,再寻求相关相似三角形例2CD是△ABC的∠C的平分线,它的垂直平分线和AB的延长线相交于E点,求证:DE是AE和BE的比例中项。分析:D…  相似文献   

12.
一、引入基本图形 1.认识基本图形 如图1,在Rt△CAB和Rt△ECD中,AC =CE,点D在边BC的延长线上,且∠ACE=∠ B=∠D=90°,Rt△CAB与Rt△ECD全等吗?请说明理由. 先提问学生:判断三角形全等的方法有几种?所要判定的两个三角形全等需要通过那种判定方法? 请学生解决上述问题并总结上述问题的特征和结论,可以让学生进行讨论交流.  相似文献   

13.
在中学数学学习过程中 ,将一些题目进行变式练习 ,有利于开阔同学们的思路 ,培养创造性思维能力 ,提高归纳、总结、发现规律的能力。图 1问题 :如图 1 ,C是线段AB上的一点 ,分别以AC、BC为边在AB的同侧作等边三角形ACD和等边三角形BCE ,边接AE、BD 求证 :AE =BD 证明 :△ACD和△BCE是等边三角形 ∠ 1 =∠ 3=6 0° ∠ACE =∠BCDAC =CD ,BC =CE △ACE≌△DCB图 2 AE =BD 变式一 :将点C改在AB的延长线上 ,如图 2。证明 :△ACD与△BCE是等边三角形 AC =CD ,BC =CE∠C =∠C △ACE≌△DCB AE =BD 变式二 :点C…  相似文献   

14.
相似三角形应用广泛,尤其在计算方面有它的独到之处,它常起到几何与代数之间相互沟通的桥梁作用。现举例如下:一、利用相似形求线段的长例1(如图1)在△ABC中,∠C=90°,D为BC上一点,若DE⊥AE,∠ADC=45°,DE∶AE=1∶5,BE=3,求△ABD的面积。解:在Rt△DEA中,设DE=x,则AE=5xAD=(5x)2+x樤2=樤26x在Rt△ADC中,∵∠ADC=45°,∴AC=DC=樤22AD=樤13x在Rt△BDE中,BD=32+x樤2=9+x樤2在Rt△BDE和Rt△BAC中,∠DBE=∠ABC则Rt△BDE∽Rt△BAC∴DEAC=BDBA,即x樤13x=9+x樤23+5x解得x1=2,x2=-92(x不能为负数,∴x2不合题意舍去)…  相似文献   

15.
《时代数学学习》2004,(6):41-42
1 .3 6.  2 .1 5或 1 7.  3 .正确 .  [提示 ]  ( 1 )先说明△ABE ≌△DCF;( 2 )再由△DCE≌△ABF得 AF=DE ,再说明△AEF≌△DFE ,有∠AFE =∠DEF .  4.( 1 )AE =CD .  [提示 ]在Rt△ACE与Rt△CBD中 ,AC =CB . 又因为∠EFC是直角 ,故∠BCD =90° -∠AEC =∠CAE . 可推得Rt△ACE ≌Rt△CBD .  ( 2 )BD =8cm .  5 .相等 . 理由 :连结BD、CE ,则在△ABD与△ACE中 , 因为AB =AC ,AD =AE ,∠DAB =∠EAC ,所以 △ABD ≌△ACE .故BD =CE ,∠DBA =∠ECA . 又在△ADC与△AEB中 ,因为AD…  相似文献   

16.
<正>我们在解(证)几何问题时,常常可利用轴对称性质构造出一个轴对称图形,这样能使解题过程更加简捷.下面举例说明.例1如图1,△ABC中,∠BAC=60°,AB=2AC,D是△ABC内一点,满足AD=3(1/2),BD=5,CD=2,求△ABC的面积.分析把△ACD、△CDB、△ADB分别AD、CB、AB作轴对称变换,把分散的线段,集  相似文献   

17.
人教版《几何》第二册第226页的例2:已知;Rt△ABC中,CD是斜边上的高,求证:△ABC∽△CBD∽△ACD(如图1). 在这个图形中,大三角形套小三角形,  相似文献   

18.
三角形三条高相交于一点,这点称为三角形的垂心。由此可得:△ABC任意两条高线AD、BE相交于H,则CH⊥AB。运用这个性质,可巧妙地解决一些几何问题。例1 CD是Rt△ABC斜边上的高,∠BAC的平分线AE交CD于H,交∠BCD的平分线CF于G,求证:FH∥BC。本题一般的证明思路是利用三角形的内角平分线的性质定理,得出DH∶HC=DF∶FB,推出HF∥BC。如果本题采用垂心性质来解,则别有味道,不失巧妙。证明:由AC⊥BC、CD⊥AB,得∠CAD=∠DCB,又因为∠DAH=∠CAH,∠DCF=∠BCF,因此,∠DCF=∠DAH,又∠ADH=Rt∠,得∠A…  相似文献   

19.
1.4.2.(1)AB=CD.(2)∠AEB=∠CFD.3.12a.4.15°.5.10.6.①②.7.41a.8.①②③.9.D.10.A.11.A.12.D.13.D.14.D.15.证法一:在△BRP和△CPQ中,∵∠B=∠C=60°,BP=CQ,∠BPR=∠CQP=90°,∴△BRP≌△CPQ,∴RP=PQ.同理,PQ=QR.∴△RPQ为等力三角形.证法二:∵AB=BC=AC,∴∠B=∠C=∠A=60°.又BP=CQ=AR,∴△BRP≌△CPQ≌△AQR.∴PR=PQ=RQ.16.(1)连结AD,∵D为BC中点,△ABC为等腰三角形,∴∠DAE=∠DAF,∴△ADE≌△ADF,∴DE=DF.(2)在Rt△BDE和Rt△CDF中∠BED=∠CFD=90°,∵AB=AC,∴∠B=∠C.又ED=DF,∴…  相似文献   

20.
1.巧构全等三角形证线段相等例 1.已知 ,如图 ,AB=DE,直线 AE、BD相关于点 O,∠ B与∠ D互补。  求证 :AO=ED。证明 :过点 A作 AC∥ DE交 BD于 C,则∠ D=∠ 2。∵∠ 1 ∠ 2 =180°,∠ B ∠ D=180°,∴∠ 1=∠ B,∴ AB=AC,∴ AB=DE=CA。在△ ACO和△ EDO中 ,∠ AOC=∠ EOD,∠ 2=∠ D,AC=DE;∴△ ACO △ EDO( AAS) ,∴ AO=ED。2 .巧构全等三角形证角相等例 2 .已知等边△ ABC的边长为 a,在 BC的延长线上取一点 D,使 CD=b,在 BA延长线上取一点 E,使 AE=a b。求证 :∠ ECD=∠ EDC。证明 :过 E作 EF∥ AC…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号