首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Understanding the mechanical properties of optically transparent polydimethylsiloxane (PDMS) microchannels was essential to the design of polymer-based microdevices. In this experiment, PDMS microchannels were filled with a 100 μM solution of rhodamine 6G dye at very low Reynolds numbers (∼10−3). The deformation of PDMS microchannels created by pressure-driven flow was investigated by fluorescence microscopy and quantified the deformation by the linear relationship between dye layer thickness and intensity. A line scan across the channel determined the microchannel deformation at several channel positions. Scaling analysis widely used to justify PDMS bulging approximation was allowed when the applied flow rate was as high as 2.0 μl/min. The three physical parameters (i.e., flow rate, PDMS wall thickness, and mixing ratio) and the design parameter (i.e., channel aspect ratio = channel height/channel width) were considered as critical parameters and provided the different features of pressure distributions within polymer-based microchannel devices. The investigations of the four parameters performed on flexible materials were carried out by comparison of experiment and finite element method (FEM) results. The measured Young''s modulus from PDMS tensile test specimens at various circumstances provided reliable results for the finite element method. A thin channel wall, less cross-linker, high flow rate, and low aspect ratio microchannel were inclined to have a significant PDMS bulging. Among them, various mixing ratios related to material property and aspect ratios were one of the significant factors to determine PDMS bulging properties. The measured deformations were larger than the numerical simulation but were within corresponding values predicted by the finite element method in most cases.  相似文献   

2.
Definable surface chemistry is essential for many applications of microfluidic polymer systems. However, small cross-section channels with a high surface to volume ratio enhance passive adsorption of molecules that depletes active molecules in solution and contaminates the channel surface. Here, we present a one-step photochemical process to coat the inner surfaces of closed microfluidic channels with a nanometer thick layer of poly(ethylene glycol) (PEG), well known to strongly reduce non-specific adsorption, using only commercially available reagents in an aqueous environment. The coating consists of PEG diacrylate (PEGDA) covalently grafted to polymer surfaces via UV light activation of the water soluble photoinitiator benzoyl benzylamine, a benzophenone derivative. The PEGDA coating was shown to efficiently limit the adsorption of antibodies and other proteins to <5% of the adsorbed amount on uncoated polymer surfaces. The coating could also efficiently suppress the adhesion of mammalian cells as demonstrated using the HT-29 cancer cell line. In a subsequent equivalent process step, protein in aqueous solution could be anchored onto the PEGDA coating in spatially defined patterns with a resolution of <15 μm using an inverted microscope as a projection lithography system. Surface patterns of the cell binding protein fibronectin were photochemically defined inside a closed microfluidic device that was initially homogeneously coated by PEGDA. The resulting fibronectin patterns were shown to greatly improve cell adhesion compared to unexposed areas. This method opens for easy surface modification of closed microfluidic systems through combining a low protein binding PEG-based coating with spatially defined protein patterns of interest.  相似文献   

3.
We propose a blood separation microfluidic device suitable for point-of-care (POC) applications. By utilizing the high gas permeability of polydimethylsiloxane (PDMS) and phaseguide structures, a simple blood separation device is presented. The device consists of two main parts. A separation chamber with the phaseguide structures, where a sample inlet, a tape-sealed outlet, and a dead-end ring channel are connected, and pneumatic chambers, in which manually operating syringes are plugged. The separation chamber and pneumatic chambers are isolated by a thin PDMS wall. By manually pulling out the plunger of the syringe, a negative pressure is instantaneously generated inside the pneumatic chamber. Due to the gas diffusion from the separation chamber to the neighboring pneumatic chamber through the thin permeable PDMS wall, low pressure can be generated, and then the whole blood at the sample inlets starts to be drawn into the separation chamber and separated through the phaseguide structures. Reversely, after removing the tape at the outlet and manually pushing in the plunger of the syringe, a positive pressure will be created which will cause the air to diffuse back into the ring channel, and therefore allow the separated plasma to be recovered at the outlet on demand. In this paper, we focused on the study of the plasma separation and associated design parameters, such as the PDMS wall thickness, the air permeable overlap area between the separation and pneumatic chambers, and the geometry of the phaseguides. The device required only 2 μl of whole blood but yielding approximately 0.38 μl of separated plasma within 12 min. Without any of the requirements of sophisticated equipment or dilution techniques, we can not only separate the plasma from the whole blood for on-chip analysis but also can push out only the separated plasma to the outlet for off-chip analysis.  相似文献   

4.
This paper describes a new and facile approach for the formation of pore-spanning bilayer lipid membranes (BLMs) within a poly(dimethylsiloxane) (PDMS) microfluidic device. Commercially, readily available polycarbonate (PC) membranes are employed for the support of BLMs. PC sheets with 5 μm, 2 μm, and 0.4 μm pore diameters, respectively, are thermally bonded into a multilayer-stack, reducing the pore density of 0.4 μm-pore PC by a factor of 200. The BLMs on this support are considerably stable (a mean lifetime: 17 h). This multilayer-stack PC (MSPC) membrane is integrated into the PDMS chip by an epoxy bonding method developed to secure durable bonding under the use of organic solvents. The microchip has a special channel for guiding a micropipette in the proximity of the MSPC support. With this on-site injection technique, tens to hundreds of nanoliters of solutions can be directly dispensed to the support. Incorporating gramicidin ion channels into BLMs on the MSPC support has confirmed the formation of single BLMs, which is based on the observation from current signals of 20 pS conductance that is typical to single channel opening. Based on the bilayer capacitance (1.4 pF), about 15% of through pores across the MSPC membrane are estimated to be covered with BLMs.  相似文献   

5.
Microfluidic diagnostic devices often require handling particles or cells with different sizes. In this investigation, a tunable hydrophoretic device was developed which consists of a polydimethylsiloxane (PDMS) slab with hydrophoretic channel, a PDMS diaphragm with pressure channel, and a glass slide. The height of the hydrophoretic channel can be tuned simply and reliably by deforming the elastomeric diaphragm with pressure applied on the pressure channel. This operation allows the device to have a large operating range where different particles and complex biological samples can be processed. The focusing performance of this device was tested using blood cells that varied in shape and size. The hydrophoretic channel had a large cross section which enabled a throughput capability for cell focusing of ∼15 000 cells s−1, which was more than the conventional hydrophoretic focusing and dielectrophoresis (DEP)-active hydrophoretic methods. This tunable hydrophoretic focuser can potentially be integrated into advanced lab-on-a-chip bioanalysis devices.  相似文献   

6.
An easy method is introduced allowing fast polydimethylsiloxane (PDMS) replication of nanofluidic lab-on-chip devices using accurately fabricated molds featuring cross-sections down to 60 nm. A high quality master is obtained through proton beam writing and UV lithography. This master can be used more than 200 times to replicate nanofluidic devices capable of handling single DNA molecules. This method allows to fabricate nanofluidic devices through simple PDMS casting. The extensions of YOYO-1 stained bacteriophage T4 and λ−DNA inside these nanochannels have been investigated using fluorescence microscopy and follow the scaling prediction of a large, locally coiled polymer chain confined in nanochannels.  相似文献   

7.
This paper presents a vertically positioned microfluidic system made of poly(dimethylsiloxane) (PDMS) and glass, which can be applied as a microbubble column (μBC) for biotechnological screening in suspension. In this μBC, microbubbles are produced in a cultivation chamber through an integrated nozzle structure. Thus, homogeneous suspension of biomass is achieved in the cultivation chamber without requiring additional mixing elements. Moreover, blockage due to produced carbon dioxide by the microorganisms—a problem predominant in common, horizontally positioned microbioreactors (MBRs)—is avoided, as the gas bubbles are released by buoyancy at the upper part of the microsystem. The patterned PDMS layer is based on an optimized two-lithographic process. Since the naturally hydrophobic PDMS causes problems for the sufficient production of microbubbles, a method based on polyelectrolyte multilayers is applied in order to allow continuous hydrophilization of the already bonded PDMS-glass-system. The μBC comprises various microelements, including stabilization of temperature, control of continuous bubble formation, and two optical configurations for measurement of optical density with two different sensitivities. In addition, the simple and robust application and handling of the μBC is achieved via a custom-made modular plug-in adapter. To validate the scalability from laboratory scale to microscale, and thus to demonstrate the successful application of the μBC as a screening instrument, a batch cultivation of Saccharomyces cerevisiae is performed in the μBC and compared to shake flask cultivation. Monitoring of the biomass growth in the μBC with the integrated online analytics resulted in a specific growth rate of 0.32 h−1, which is almost identical to the one achieved in the shake flask cultivation (0.31 h−1). Therefore, the validity of the μBC as an alternative screening tool compared to other conventional laboratory scale systems in bioprocess development is proven. In addition, vertically positioned microbioreactors show high potential in comparison to conventional screening tools, since they allow for high density of integrated online analytics and therefore minimize time and cost for screening and guarantee improved control and analysis of cultivation parameters.  相似文献   

8.
In recent years, there has been a dramatic increase in the use of poly(dimethylsiloxane) (PDMS) devices for cell-based studies. Commonly, the negative tone photoresist, SU8, is used to pattern features onto silicon wafers to create masters (SU8-Si) for PDMS replica molding. However, the complexity in the fabrication process, low feature reproducibility (master-to-master variability), silane toxicity, and short life span of these masters have been deterrents for using SU8-Si masters for the production of cell culture based PDMS microfluidic devices. While other techniques have demonstrated the ability to generate multiple devices from a single master, they often do not match the high feature resolution (∼0.1 μm) and low surface roughness that soft lithography masters offer. In this work, we developed a method to fabricate epoxy-based masters that allows for the replication of features with high fidelity directly from SU8-Si masters via their PDMS replicas. By this method, we show that we could obtain many epoxy based masters with equivalent features to a single SU8-Si master with a low feature variance of 1.54%. Favorable feature transfer resolutions were also obtained by using an appropriate Tg epoxy based system to ensure minimal shrinkage of features ranging in size from ∼100 μm to <10 μm in height. We further show that surface coating epoxy masters with Cr/Au lead to effective demolding and yield PDMS chambers that are suitable for long-term culturing of sensitive primary hippocampal neurons. Finally, we incorporated pillars within the Au-epoxy masters to eliminate the process of punching media reservoirs and thereby reducing substantial artefacts and wastage.  相似文献   

9.
Ambipolar polymer semiconductors are potentially serviceable for logic circuits, light-emitting field-effect transistors (LFETs) and polymer solar cells (PSCs). Although several high-performance ambipolar polymers have been developed, their optoelectronic devices are generally processed from toxic chlorinated solvents. To achieve the commercial applications of organic FETs (OFETs), the polymers should be processed from nonchlorinated solvents, instead of chlorinated solvents. However, most conjugated polymers show poor solubility in nonchlorinated solvents. It is of great importance to develop ambipolar polymers that can be processed from nonchlorinated solvents. Here, we develop a nonchlorinated solvent processed polymer named poly[7-fluoro-N, N-di(4-decyltetradecyl)-7-azaisoindigo-6,6-(thieno[3,2-b]thiophene-2,5-diyl)-7‴-fluoro-N, N‴-di(4-decyltetradecyl)-7-azaisoindigo-6,6‴-([2,2-bithiophene]-5,5-diyl)] (PITTI-BT) by designing a monomer with a large molar mass. The polymer displays good solubility in p-xylene (PX). Well-aligned films of PITTI-BT are achieved by an off-center spin-coating (SC) method. Based on the high-quality films, the OFETs fabricated from PX solution achieve record ambipolar performance with hole and electron mobilities of 3.06 and 2.81 cm2 V−1 s−1, respectively. The combination of nonchlorinated solvents and good alignment process offers an effective and eco-friendly approach to obtain high-performance ambipolar transistors.  相似文献   

10.
Lithium–sulfur batteries have great potential for high-performance energy-storage devices, yet the severe diffusion of soluble polysulfide to electrolyte greatly limits their practical applications. To address the above issues, herein we design and synthesize a novel polymer binder with single lithium-ion channels allowing fast lithium-ion transport while blocking the shuttle of unnecessary polysulfide anions. In situ UV–vis spectroscopy measurements reveal that the prepared polymer binder has effective immobilization to polysulfide intermediates. As expected, the resultant sulfur cathode achieves an excellent specific capacity of 1310 mAh g−1 at 0.2 C, high Coulombic efficiency of 99.5% at 0.5 C after 100 cycles and stable cycling performance for 300 cycles at 1 C (1 C = 1675 mA g−1). This study reports a new avenue to assemble a polymer binder with a single lithium-ion channel for solving the serious problem of energy attenuation of lithium–sulfur batteries.  相似文献   

11.
Herein, we present a large-area 3D hemispherical perforated microwell structure for a bead based bioassay. Such a unique microstructure enables us to perform the rapid and stable localization of the beads at the single bead level and the facile manipulation of the bead capture and retrieval with high speed and efficiency. The fabrication process mainly consisted of three steps: the convex micropatterned nickel (Ni) mold production from the concave micropatterned silicon (Si) wafer, hot embossing on the polymer matrix to generate the concave micropattened acrylate sheet, and reactive ion etching to make the bottom holes. The large-area hemispherical perforated micropatterned acrylate sheet was sandwiched between two polydimethylsiloxane (PDMS) microchannel layers. The bead solution was injected and recovered in the top PDMS microchannel, while the bottom PDMS microchannel was connected with control lines to exert the hydrodynamic force in order to alter the flow direction of the bead solution for the bead capture and release operation. The streptavidin-coated microbead capture was achieved with almost 100% yield within 1 min, and all the beads were retrieved in 10 s. Lysozyme or thrombin binding aptamer labelled microbeads were trapped on the proposed bead microarray, and the in situ fluorescence signal of the bead array was monitored after aptamer-target protein interaction. The protein-aptamer conjugated microbeads were recovered, and the aptamer was isolated for matrix assisted laser desorption/ionization time-of-flight mass spectrometry analysis to confirm the identity of the aptamer.  相似文献   

12.
Burke JM  Smela E 《Biomicrofluidics》2012,6(1):16506-1650610
A new method of surface modification is described for enabling the in situ formation of homogenous porous polymer monoliths (PPMs) within poly(dimethylsiloxane) (PDMS) microfluidic channels that uses 365 nm UV illumination for polymerization. Porous polymer monolith formation in PDMS can be challenging because PDMS readily absorbs the monomers and solvents, changing the final monolith morphology, and because PDMS absorbs oxygen, which inhibits free-radical polymerization. The new approach is based on sequentially absorbing a non-hydrogen-abstracting photoinitiator and the monomers methyl methacrylate and ethylene diacrylate within the walls of the microchannel, and then polymerizing the surface treatment polymer within the PDMS, entangled with it but not covalently bound. Four different monolith compositions were tested, all of which yielded monoliths that were securely anchored and could withstand pressures exceeding the bonding strength of PDMS (40 psi) without dislodging. One was a recipe that was optimized to give a larger average pore size, required for low back pressure. This monolith was used to concentrate and subsequently mechanical lyse B lymphocytes.  相似文献   

13.
Cell culture in microfluidic systems has primarily been conducted in devices comprised of polydimethylsiloxane (PDMS) or other elastomers. As polystyrene (PS) is the most characterized and commonly used substrate material for cell culture, microfluidic cell culture would ideally be conducted in PS-based microsystems that also enable tight control of perfusion and hydrodynamic conditions, which are especially important for culture of vascular cell types. Here, we report a simple method to prototype perfusable PS microfluidics for endothelial cell culture under flow that can be fabricated using standard lithography and wet laboratory equipment to enable stable perfusion at shear stresses up to 300 dyn/cm2 and pumping pressures up to 26 kPa for at least 100 h. This technique can also be extended to fabricate perfusable hybrid PS-PDMS microfluidics of which one application is for increased efficiency of viral transduction in non-adherent suspension cells by leveraging the high surface area to volume ratio of microfluidics and adhesion molecules that are optimized for PS substrates. These biologically compatible microfluidic devices can be made more accessible to biological-based laboratories through the outsourcing of lithography to various available microfluidic foundries.  相似文献   

14.
We have investigated the bonding stability of various silane treatments for the integration of track-etched membranes with poly(dimethylsiloxane) (PDMS) microfluidic devices. We compare various treatments using trialkoxysilanes or dipodal silanes to determine the effect of the organofunctional group, cross-link density, reaction solvent, and catalyst on the bond stability. We find that devices made using existing silane methods delaminated after one day when immersed in cell culture medium at 37 °C. In contrast, the dipodal silane, bis[3-(trimethoxysilyl)propyl]amine, is shown to yield stable and functional integration of membranes with PDMS that is suitable for long-term cell culture. To demonstrate application of the technique, we fabricated an open-surface device in which cells cultured on a track-etched membrane can be stimulated at their basal side via embedded microfluidic channels. C2C12 mouse myoblasts were differentiated into myotubes over the course of two weeks on these devices to demonstrate biocompatibility. Finally, devices were imaged during the basal-side delivery of a fluorescent stain to validate the membrane operation and long-term stability of the bonding technique.  相似文献   

15.
Thermoresponsive polymer surface coatings are a promising tool for cell culture applications. They allow for a mild way of cell detachment that preserves the activity of membrane proteins—a prerequisite for reliable cell analysis. To enlarge the application range of these coatings to cells with different adhesion properties, we synthesized various novel poly(ethylene glycol)-based thermoresponsive polymers and describe how (i) their chemical structure and (ii) their surface density affect their efficiency. In order to quantify the influence of both factors, the time for cell spreading and rounding efficiency were observed. As a result, efficiency of cell rounding, which is closely correlated to cell detachment, is less affected by both factors than the time needed for cell spreading. This time can effectively be adjusted by the molecular architecture which includes the length of the polymer backbone and the side chains. Based on this work, recommendations are given for future optimization of functionality of thermoresponsive polymer coatings for cell culture applications.  相似文献   

16.
This paper presents a low-cost, power-free, and easy-to-use spotter system for fabrication of microarrays. The spotter system uses embedded dispensing microchannels combined with a polydimethylsiloxane (PDMS) membrane containing regular arrays of well-defined thru-holes to produce precise, uniform DNA or protein microarrays for disease diagnosis or drug screening. Powered by pre-evacuation of its PDMS substrate, the spotter system does not require any additional components or external equipment for its operation, which can potentially allow low-cost, high-quality microarray fabrication by minimally trained individuals. Polyvinylpyrrolidone was used to modify the PDMS surface to prevent protein adsorption by the microchannels. Experimental results indicate that the PDMS spotter shows excellent printing performance for immobilizing proteins. The measured coefficient of variation (CV) of the diameter of 48 spots was 2.63% and that of the intensity within one array was 2.87%. Concentration gradient experiments revealed the superiority of the immobilization density of the PDMS spotter over the conventional pin-printing method. Overall, this low-cost, power-free, and easy-to-use spotting system provides an attractive new method to fabricate microarrays.  相似文献   

17.
Building on recent breakthroughs in the field of microfluidic-based capture of rare cancer cells circulating in the blood, the present article reports on the use of Herceptin functionalized PDMS devices designed to efficiently capture from blood cancer cells, overexpressing the tyrosine kinase human epidermal growth factor receptor (HER2). The identification of patients overexpressing HER2 is critical as it typically associates with an aggressive disease course in breast cancer and poor prognosis. Importantly, HER2 positive patients have been found to significantly benefit from Herceptin (Trastuzumab), a humanized monoclonal antibody (MAb) against HER2. Disposable PDMS devices prepared using standard soft lithography were functionalized by the plasma polymerization of an epoxy-containing monomer. The epoxy-rich thin film (AGEpp) thus created could be conjugated with Herceptin either directly or through a polyethylene glycol interlayer. The properties and reactivity toward the monoclonal antibody conjugation of these coatings were determined using x-ray photoelectron spectroscopy; direct conjugation provided a good compromise in reactivity and resistance to biologically nonspecific fouling and was selected. Using the breast cancer cell line SK-BR-3 as a model for cells overexpressing HER2, the immunocapture efficacy of the Herceptin functionalized PDMS was demonstrated in model studies. Validation studies confirmed the ability of the device to efficiently capture (~80% capture yield) HER2 positive cells from full blood.  相似文献   

18.
Hydrogels—natural or synthetic polymer networks that swell in water—can be made mechanically, chemically and electrically compatible with living tissues. There has been intense research and development of hydrogels for medical applications since the invention of hydrogel contact lenses in 1960. More recently, functional hydrogel coatings with controlled thickness and tough adhesion have been achieved on various substrates. Hydrogel-coated substrates combine the advantages of hydrogels, such as lubricity, biocompatibility and anti-biofouling properties, with the advantages of substrates, such as stiffness, toughness and strength. In this review, we focus on three aspects of functional hydrogel coatings: (i) applications and functions enabled by hydrogel coatings, (ii) methods of coating various substrates with different functional hydrogels with tough adhesion, and (iii) tests to evaluate the adhesion between functional hydrogel coatings and substrates. Conclusions and outlook are given at the end of this review.  相似文献   

19.
Lithium metal is one of the most promising anode materials for high-energy-density Li batteries. However, low stability caused by dendrite growth and volume change during cycling hinders its practical application. Herein, we report an ingenious design of bio-inspired low-tortuosity carbon with tunable vertical micro-channels to be used as a host to incorporate nanosized Sn/Ni alloy nucleation sites, which can guide Li metal''s plating/stripping and meanwhile accommodate the volume change. The pore sizes of the vertical channels of the carbon host can be regulated to investigate the structure–performance correlation. After compositing Li, the bio-inspired carbon host with the smallest pore size (∼14 μm) of vertical channels exhibits the lowest overpotential (∼18 mV at 1 mA cm−2), most stable tripping/plating voltage profiles, and best cycling stability (up to 500 cycles) in symmetrical cells. Notably, the carbon/Li composite anode is more rewarding than Li foil when coupled with LiFePO4 in full cells, exhibiting a much lower polarization effect, better rate capability and higher capacity retention (90.6% after 120 cycles). This novel bio-inspired design of a low-tortuosity carbon host with nanoalloy coatings may open a new avenue for fabricating advanced Li-metal batteries with high performance.  相似文献   

20.
Electrokinetic properties and morphology of PDMS microfluidic chips intended for bioassays are studied. The chips are fabricated by a casting method followed by polymerization bonding. Microchannels are coated with 1% solution of bovine serum albumin (BSA) in Tris buffer. Albumin passively adsorbs on the PDMS surface. Electrokinetic characteristics (electro-osmotic velocity, electro-osmotic mobility, and zeta potential) of the coated PDMS channels are experimentally determined as functions of the electric field strength and the characteristic electrolyte concentration. Atomic force microscopy (AFM) analysis of the surface reveals a “peak and ridge” structure of the protein layer and an imperfect substrate coating. On the basis of the AFM observation, several topologies of the BSA-PDMS surface are proposed. A nonslip mathematical model of the electro-osmotic flow is then numerically analyzed. It is found that the electrokinetic characteristics computed for a channel with the homogeneous distribution of a fixed electric charge do not fit the experimental data. Heterogeneous distribution of the fixed electric charge and the surface roughness is thus taken into account. When a flat PDMS surface with electric charge heterogeneities is considered, the numerical results are in very good agreement with our experimental data. An optimization analysis finally allowed the determination of the surface concentration of the electric charge and the degree of the PDMS surface coating. The obtained findings can be important for correct prediction and possibly for robust control of behavior of electrically driven PDMS microfluidic chips. The proposed method of the electro-osmotic flow analysis at surfaces with a heterogeneous distribution of the surface electric charge can also be exploited in the interpretation of experimental studies dealing with protein-solid phase interactions or substrate coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号