首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
我们把连接圆锥曲线的焦点与曲线上任一点的连线段称为它们的焦半径,根据圆锥曲线的统一定义,很容易推导出圆锥曲线的焦半径公式.下面是用得较多的焦半径公式: (1)对于椭圆x2/a2 y2/b2=1(a>b>0)而言.|PF1|=a ex0,|PF2|=a-ex0. (2)对于双曲线x2/a2-y2/b2=1(a>0,b> 0)而言,|PF1|=ex0 a,|PF2|=ex0-a. (3)对于抛物线y2=2px(p>0)而言, |PF|=x0 p/2.  相似文献   

2.
在圆锥曲线中,其焦点既给圆锥曲线定“位”,又直接影响着圆锥曲线的某些“量”的变化,也就是圆锥曲线的众多性质都依赖于焦点,所以由焦点而引发出圆锥曲线的许多问题,使“过焦点问题”成为高考的热点题型,涉及焦点的高考试题已成为人们关注的热点.一、圆锥曲线的焦半径问题我们把连接圆锥曲线的焦点与曲线上任一点的连线段称为它们的焦半径,根据圆锥曲线的统一定义,很容易推导出圆锥曲线的焦半径公式.下面是用得较多的焦半径公式:(1)对于椭圆x2a2+y2b2=1(a>b>0)而言,|PF1|=a+ex0,|PF2|=a-ex0.(2)对于双曲线x2a2-y2b2=1(a>0,b>0)而言,|PF1…  相似文献   

3.
连接圆锥曲线的焦点与曲线上任一点的线段统称为它的焦半径,根据圆锥曲线的统一定义,很容易推导出圆锥曲线的焦半径公式,下面是用处较多的椭圆、双曲线、抛物线的焦半径公式:1)对于椭圆ax22 by22=1(a>b>0)而言,焦半径公式为:|PF1|=a ex,|PF2|=a-ex.2)对于双曲线ax22-by22=1(a>0  相似文献   

4.
设P(x0,y0)是椭圆x2/a2+y2/b2=1(a>b>0)上的点,F1、F2为其左、右焦点.由椭圆第二定义易得|PF1|=a+ex0,|PF2|=a-ex0(e为离心率).这就是椭圆的焦半径公式,运用它可解决与焦点三角形有关的问题. 1.求坐标取值范围  相似文献   

5.
本文探索了椭圆、双曲线焦半径与焦半径夹角的关系,得到如下两个结论. 定义圆锥曲线上一点与其焦点的连线段叫做焦半径. 定理1 P(x0,y0)是椭圆x2/a2 y2/b2=1(a>b>0)上一点,F1(-c,0),F2(c,0)是左右焦点,设|PF1|=r1,|PF2|=r2,∠F1PF2=θ,则 2b2/1 cosθ=r1r2,且tanθ/2=c|y0|/b2. 证:如图,在△F1PF2中有  相似文献   

6.
椭圆x2/a2+y2/b2=1(a>b>0)中除长轴两端点外的任一点P(x1,y1)与两焦点F1(-c,0)、F2(c,0)所组成的三角形PF1F2叫做焦点三角形.焦半径| PF1 |=a+ex1,|PF2 |=a-ex1.焦点三角形具有不少有益的结论,而对这些结论的证明亦颇有启迪性;并且这些结论在解题中也能起到不少帮助.  相似文献   

7.
在高考数学中,圆锥曲线占有非常重要的位置,而熟练应用焦半径公式是解决圆锥曲线问题的一种简单快捷的方法.一、圆锥曲线的焦半径公式1.设 M(x_0,y_0)是椭圆x~2/a~2 y~2/b~2=1(a>b>0)上一点,F_1(-c,0)、F_2(c,0)是左、右焦点,e 是椭圆的离心率,则(1)|MF_1|=a ex_0,|MF_2|=a-ex_0.设 M(x_0,y_0)是椭圆 x~2/b~2 y~2/a~2=1(a>b>0)上一点,F_1(0,c)、F_2(0,-c)是上、下焦点,e 是椭圆的离心率,则(2)|MF_1|=  相似文献   

8.
设椭圆(x2)/(a2) (y2)/(b2)=1(a>b>0)的左右焦点分别为F1,F2,点P(x0,y0)是椭圆上的任意一点,且椭圆的离心率为e,则有|PF1|=a ex0,|PF2|=a-ex0(*),(*)式可由椭圆的第二定义很快证到,通常称之为椭圆的焦半径公式.……  相似文献   

9.
椭圆x2/a2 y2/b2=1(a>b>0)中除长轴两端点外的任一点P(x1,y1)与两焦点F1(-c,0)、F2(c,0)所组成的三角形PF1 F2叫做焦点三角形 .焦半径|PF1|=a ex1,|PF2|=a-ex1.焦点三角形具有不少有益的结论,而对这些结论的证明亦颇有启迪性;并且这些结论在解题中也能起到不少帮助. 1.△PF1F2的周长为定值. 这个结论显而易见.由椭圆定义知|PF1| |PF2|=2a,而|F1F2|=2c,因此这个定值为2a 2c.  相似文献   

10.
《考试说明》要求考生:1掌握椭圆、双曲线、抛物线的定义、标准方程及其几何性质和椭圆的参数方程;2掌握圆锥曲线的初步应用.下面介绍圆锥曲线基础试题的考点和解析.考点1 求椭圆坐标的取值范围例1 (2000年新课程卷高考题)椭圆x29+y24=1焦点为F1和F2,点P为椭圆上的动点.当∠F1PF2为钝角时,点P的横坐标的取值范围.解析:设P(x0,y0)是曲线x2a2±y2b2=1上的一点,则|PF1|=|a+ex0|,|PF2|=|a-ex0|(e为离心率,F1、F2为左、右焦点).运用焦半径公式可简捷地解决与焦点三角形有关的问题.解:a=3,b=2,c=5.设P(x,y),由焦半径公式知|PF1|=3+53x.|…  相似文献   

11.
命题F1(-c,0)、F2(c,0)是双曲线C:ax22-by22=1(a>0,b>0,c2=a2 b2)的2焦点,P(x0,y0)为C上的一点,我们称|PF1|、|PF2|为双曲线的焦半径,则|PF1|=±(a ex0),|PF2|=±(ex0-a),(e=ac为离心率).当点在双曲线的右支上时取“ ”,当点在双曲线的左支上时取“-”.河北证明以点P在双曲线右支上为例,设点P在双曲线左准线上的射影为Q,d=|PQ|=ac2 x0,由双曲线的第2定义有:||PPFQ1||=e,r1=|PF1|=ed=a ex0,同理(或再由双曲线的第一定义)有:r2=|PF2|=r1-2a=ex0-a.从双曲线焦半径公式的推导过程不难看出:焦半径公式就是双曲线定义的浓缩,应用焦半径…  相似文献   

12.
<正>焦半径公式:已知F1,F2是椭圆x2/a2/a2+y2+y2/b2/b2=1(a>b>0)的左、右焦点,P(x_0,y_0)是椭圆上一点,则|PF_1|=a+ex_0,|PF_2|=a-ex_0。证明:椭圆的左准线方程为x=-a2=1(a>b>0)的左、右焦点,P(x_0,y_0)是椭圆上一点,则|PF_1|=a+ex_0,|PF_2|=a-ex_0。证明:椭圆的左准线方程为x=-a2/c。由椭圆的第二定义,得|PF_1|/(x_0+a2/c。由椭圆的第二定义,得|PF_1|/(x_0+a2/c)=c/a,即  相似文献   

13.
为了提高同学们的应试能力,特别是能够快捷地解答有关选择题和填空题的能力,本文归纳总结出圆锥曲线部分的实用小结论,以供参考.1椭圆1)椭圆的一般式方程:mx2 ny2=1(m>0,n>0,m≠n)2)椭圆的面积公式S=πab.3)点P(x0,y0)在椭圆xa22 by22=1(a>b>0)内部xa220 yb202<1;点P(x0,y0)在椭圆xa22 yb22=1外部ax202 yb202>1.图14)椭圆焦点弦及焦点三角形的性质:如图1,设椭圆C:xa22 by22=1(a>b>0),左焦点F1(-c,0),右焦点F2(c,0),P(x0,y0)是椭圆上的一点,则①焦半径公式:|PF1|=a ex0,|PF2|=a-ex0.②椭圆上不同3点A(x1,y1)、B(x2,y2)、C(x3,y3),则相…  相似文献   

14.
题目 (2014年湖北理数第9题)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=π/3,则椭圆和双曲线的离心率的倒数之和的最大值为() A.4√3/3 B.2√3/3 C.3 D.2 解析:不妨设椭圆和双曲线的方程分别为x2/a212+t2/b12=1和x2/a22-y2/b22=1,其中:a1>b1>0,a2 >0,b2 >0,且椭圆和双曲线的离心率分别为e1和e2.记|PF1 |=m,| PF2 |=n,则由椭圆和双曲线的定义知:|m+n|=2a1①,| m-n |=2a2②.由①②得:m2+n2=2a2+ 2a2,mn=a12-a22③.在△F1 PF2中,应用余弦定理得:cos∠ F1PF2=m2+n2-(2c)2/2mn =1/2,即m2+ n2-4c2=mn.  相似文献   

15.
设双曲线(x~2)/(a~2)-(y~2)/(b~2)=1(a>0,b>0)的左、右焦点分别为F_1,F_2,离心率为e,P为双曲线上一点,其横坐标为x_P,则当xp≥a时,|PF_1|=a xpe①,|PF_2|=-a xpe②;当xP≤-a时,|PF_1|=-a-xpe③,|PF2|=a-xpe④.  相似文献   

16.
本文介绍椭圆与双曲线的一个有趣性质,并说明其应用. 性质 1 设P点是椭圆b2x2+a2y2+a2b2(a>b>0)上异于长轴端点的任一点,F1,F2为其焦点,记∠F1PF2=θ,则|PF1|·|PF2|=2b2/1+cosθ 简证:由椭圆定义有|PF1|+|PF2|=2a (1) 在△PF1F2中,由余弦定理有 |PF1|2+|PF2|2-2|PF1|·|PF2|·cosθ=4e2 (2) (1)2-(2)化简得 |PF1|·|PF2|= 2b2/1+cosθ 性质2 将性质1中的 b2x2+a2y2=a2b2改为b2x2-a2y2=a2b2(a>0,b> 0),其余不  相似文献   

17.
一、利用定义圆锥曲线的定义是其一切几何性质的“根”与“源”,有关离心率范围的问题可直接应用定义求解.【例1】已知双曲线x2a2-yb22=1(a>0,b>0)的左、右两焦点分别是F1、F2,P是它左支上的一点,P到左准线的距离为d,若d、|PF1|、|PF2|成等比数列,求离心率e的取值范围.解析:由题意容易联想到双曲线的定义:|PF1|d=e,|PF2|-|PF1|=2a.由题意知d·|PF2|=|PF1|2,由这三个关系式可解得:|PF1|=e2-a1,|PF2|=e2-ea1.因|PF1| |PF2|≥|F1F2|,故e2-a1 e2-ea1≥2c=2ea.即e2-2e-1≤0.解得:1相似文献   

18.
三、圆锥曲线的焦点弦问题过焦点的直线与圆锥曲线相交,两个交点的线段叫焦点弦,与焦点弦有关的圆锥曲线问题常用定义(特别是第二定义中的焦半径公式)把问题转化.1.如果弦MN过椭圆的焦点F1,设M(x1,y1),N(x2,y2),则|MN|=a ex1 a ex2=2a e(x1 x2).【例6】设椭圆方程为ax22 by22=1  相似文献   

19.
圆锥曲线上的一点和焦点的连结线段叫做这点的焦半径 ,从圆锥曲线的统一定义出发 ,可以证得圆锥曲线的焦半径的计算公式 :(证法从略 )1° 设P(x1 ,y1 )为椭圆 x2a2 y2b2 =1上任意一点 ,F1 、F2 为左、右焦点 ,则 |PF1 | =a ex1 ,|PF2 |=a -ex1 .2° 在双曲线 x2a2 - y2b2 =1中 ,F1 、F2 为左、右焦点 ,若P(x1 ,y1 )在双曲线右支上 ,则 |PF1 | =ex1 a ,|PF2 | =ex1 -a ;若P(x1 ,y1 )在双曲线左支上 ,则 |PF1 | =- (ex1 a) ,|PF2 | =- (ex1 -a) .3° 设P(x1 ,y1 )为抛物线 y2…  相似文献   

20.
<正>椭圆、双曲线或抛物线上一点与焦点的线段,叫做圆锥曲线的焦半径。(1)已知椭圆x~2/a~2+y~2/b~2=1(a>b>0)的左、右焦点分别是F_1(-c,0)、F_2 (c,0),P(x_0,y_0)是椭圆上的动点,则PF_1=a+ex_0,PF_2=a-ex_0,且焦半径的长度的取值  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号