首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Apriori算法是一种挖掘布尔型关联规则的典型算法。该算法在生成频繁项集时会有频繁的数据库扫描操作,并且在由低维频繁项集连接生成高维候选项集时,如果频繁项集维数过大,笛卡尔积后就会产生大量的候选项集,从而影响算法的效率。针对上述2个方面对Apriori算法进行改进,并将改进后的算法应用在试卷分析系统中。经过系统测试,改进后的算法具有较高的效率和较强的稳定性。  相似文献   

2.
在挖掘关联规则的过程中,关键步骤是产生频繁项集.文中提出一种有效的频繁项集挖掘算法—FLMA.算法利用逻辑运算挖掘频繁项集,不产生候选项集,且只需扫描数据库一次,所以此算法是非常有效的.  相似文献   

3.
有效的挖掘频繁项集是挖掘最大频繁项集的关键步骤.为了克服Apriori算法在挖掘最大频繁项集上的不足,以及FP-Tree存储结构算法多次遍历的缺点,本文引进了新的矩阵技术,减少了FP-Tree遍历次数来挖掘频繁项集,提高了挖掘频繁项集和最大频繁项集效率.并以此提出基于FP-Tree的改进算法FPgrowth*和FPmax*.最后实验结果说明,矩阵技术的引进有效的提高了频繁项集和最大频繁项集挖掘效率.  相似文献   

4.
挖掘频繁项集是近年数据挖掘任务中的关键问题,提高频繁项集的生成效率一直是数据挖掘领域研究的热点之一,研究人员从不同的角度对算法进行改进以提高算法的效率。文章通过集合的交集运算,得到一种新的频繁项集挖掘算法-SetFIS算法,该算法能快速、直观地求出事务数据库的频繁项集。  相似文献   

5.
挖掘频繁项集是近年数据挖掘任务中的关键问题,提高频繁项集的生成效率一直是数据挖掘领域研究的热点之一,研究人员从不同的角度对算法进行改进以提高算法的效率。文章通过集合的交集运算,得到一种新的频繁项集挖掘算法-SetFIS算法,该算法能快速、直观地求出事务数据库的频繁项集。  相似文献   

6.
一种基于二进制编码的频繁项集查找算法   总被引:1,自引:0,他引:1  
在数据挖掘中频繁项集的查找时间是影响挖掘关联规则效率的关键因素,Apriori算法是用来找出频繁项集的典型算法,本文针对Apriori算法需反复扫描数据库、产生大量候选项集的不足,提出一种效率更高的基于二进制编码的频繁项集查找算法,该算法找出频繁项集只需一次数据库扫描,不产生候选项集,与Apriori算法相比,算法效率更高.  相似文献   

7.
关联规则的挖掘分为两步,首先找出满足最小支持度要求的频繁项目集,然后根据频繁项目集生成满足最小置信度要求的关联规则集.目前对关联规则挖掘的研究主要集中在频繁项集的生成上,然而,作为整个关联规则挖掘的一部分,由频繁项集生成关联规则的算法也有待进一步研究和改进.本文首先对传统的集合操作进行了扩展,然后在扩展集合操作的基础上,提出了由已挖掘出的最大频繁项集生成关联规则的算法ARD-ES,并对算法的复杂度作了理论和实验上的分析.实验表明,ARD-ES算法随着事务数据库容量的增大,时间占用的攀升基本上是线性的,空间占用在某一定值上下波动.  相似文献   

8.
网络日志数据量日益增大。如何从巨大的网络数据中提取有效信息是数据研究人员一直关心的问题。入侵模式挖掘系统(Intrusion Digger)结合了数据挖掘技术与入侵检测技术,旨在通过发现关联规则而对网络数据进行判别。最小支持度小于所有支持度的项集称为频繁项集,简称频集。基于划分改进的Apriori算法明显优越于原来的算法。基于划分改进的Apriori算法为入侵模式挖掘系统的设计提供了重要的理论支持。  相似文献   

9.
提出基于云计算平台(以Hadoop为例)应用布尔矩阵Apriori算法进行大数据关联规则挖掘的MR_B_Apriori算法。将Hadoop平台与布尔矩阵Apriori算法相结合,利用MapReduce框架分块处理布尔矩阵,计算出分块数据的频度,合并融合得到大数据集的频繁项集。分析表明MR_B_Apriori算法能够适用于大数据的频繁项集挖掘。  相似文献   

10.
分析了挖掘频繁访问模式的过程和当前Apriori算法的缺陷,提出了一种Apriori算法的改进算法:BLApriori算法.改进的算法采用不规则数组来保存项集信息,有效省去了扫描数据库所耗费的大量时间.将项集有序性引入到该数组上,减少了候选项集的个数.并采用二进制来表示1阶频繁访问模式,提高了模式匹配和连接的效率.试验结果表明,该改进算法能更有效地发现各种长度不同的访问模式.  相似文献   

11.
陈建辉 《宜春学院学报》2007,29(4):87-88,122
在对关联规则挖掘算法Apriori进行深入研究的基础上,提出了一种改进的算法SDA算法,在三个方面进行了改进:(1)频繁2-项集生成方法;(2)改进Apriori_gen算法(3)减少事务数据库.在实验数据集上所做的实验结果表明SDA算法是有效的.  相似文献   

12.
关联规则挖掘用于发现大量数据中项集之间有趣的关联或相关联系,在关联规则挖掘过程中,频繁项集的产生是最重要的步骤。本文提出一种新的频繁项集生成算法,基于项分组的思想,利用矩阵来存储各项的频率信息.只需扫描数据库一次。由于对项进行了分组,充分利用了各个事务的重复信息,因此在项数很多时算法效率仍然较高,实践证明,这是一个高效的频繁项集生成算法。  相似文献   

13.
针对关联规则挖掘中传统Apriori算法需要通过多次扫描数据库来发现频繁项集的问题,提出一种基于简单双矩阵的方法来实现频繁项集的发现.该方法仅需要扫描数据库一次,并充分利用项集的出现次数和是否出现逻辑值来获取频繁项集.实验表明,该方法比Apriori算法更高效.  相似文献   

14.
计算机软件蕴含大量工作信息,有效挖掘软件数据信息之间的内在关联是信息时代对软件应用的潜在要求。针对经典Apriori算法挖掘数据效率低、复杂度高的问题,提出一种改进Apriori算法用于挖掘计算机软件数据的关联规则。为计算机软件算法设置双重支持度阈值,即频繁项集与非频繁项集支持度阈值,快速获得强关联的频繁项集;在此基础上基于映射规则重构事务数据库,压缩数据库规模,减少算法的剪枝操作,降低计算机软件数据关联规则挖掘复杂度。以人力资源类计算机软件数据为例展开关联分析测试,结果显示,该算法挖掘的关联信息与人力资源实际管理情况一致,相比经典Apriori算法其效率有所提升。  相似文献   

15.
本文在分析经典Apriori算法和FP-growth算法存在问题的基础上,提出了一种基于索引数组的频繁项集挖掘算法.该算法以Apriori算法为基础,通过引入索引数组,有效缩小了候选集的范围,同时,因无需要采用FP树的存储结构,节省内存.通过实验性能分析比较,该算法可以有效提高频繁项集挖掘效率.  相似文献   

16.
数据挖掘是目前数据库界广泛研究的课题,而频繁项集的挖掘是关联规则挖掘、序列模式挖掘、相关分析挖掘、聚类模式挖掘和回归模式挖掘等问题中的关键步骤.该文介绍了频繁项集挖掘算法的相关概念,对目前频繁项集挖掘典型算法进行了分析和比较,并作出了适当的评价.  相似文献   

17.
Apriori算法是一种有效的关联规则挖掘算法,Apriori算法使用一种称作逐层搜索的迭代方法得到频繁项集,但是它产生大量的候选项集,还需要多次扫描数据库,每次对数据库的重复扫描非常冗长,大量的时间消耗在内存与数据库中的数据交换上。因此笔者引入了一种不产生候选项集的频繁项集挖掘算法——FP-growth算法,并对FP-growth算法的相关性质、实现作以介绍。  相似文献   

18.
针对Apriori算法寻找频繁项集问题,提出了一种基于有向图的频繁集挖掘算法DGFM,该算法将事务数据库表示成二进制矩阵,利用有向图的思想,将频繁项的二进制位串作为有向图的权值,再将二进制矩阵用邻接表存储,通过搜索邻接表来生成频繁项集,最后试验证明该方法比Apriori算法具有更高的效率和性能.  相似文献   

19.
针对传统的数据频繁项集挖掘技术无法快速有效地获取不确定数据中有价值信息的缺点,通过分析不确定数据产生的原因和当前已开展不确定数据挖掘的相关工作,在结合传统频繁项集挖掘算法的基础上,提出需要明确不确定数据特点,运用几种比较高效的新方法来进行不确定数据的频繁项集挖掘,从而为后续做更深入研究奠定扎实基础。  相似文献   

20.
随着大数据时代的到来,针对Apriori算法和FP Growth算法在挖掘海量规模数据频繁项集时,存在内存不足、计算效率低等问题,提出一种Aggregating_FP算法。该算法结合MapReduce并行计算框架与FP Growth算法,实现频繁项集的并行挖掘,对每个项进行规约合并处理,仅输出包含该项的前K个频繁项集,提高了海量数据决策价值的有效性。在Hadoop分布式计算平台上对多组规模不同的数据集进行测试。实验结果表明,该算法适合大规模数据的分析和处理,具有较好的可扩展性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号