首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
通过分析倍图的特征,本文给出了一般图G的倍图的控制数的下界,确定了几类特殊图的控制数.  相似文献   

2.
在定义了图的强符号控制函数和强符号控制数的基础上,给出了一些图的强符号控制数的下界.  相似文献   

3.
图的符号全控制引申为图的逆符号全控制,并在此基础上研究图的逆符号全控制数的一些性质,给出了图的逆符号全控制数的上界.  相似文献   

4.
图的符号全控制引申为图的逆符号全控制,并在此基础上研究图的逆符号全控制数的一些性质,给出了图的逆符号全控制数的上界。  相似文献   

5.
令γ(G)表示一个图G的控制数,G×H表示图G和图H的笛卡尔乘积.现已有很多控制数的研究文章,参考已有控制数知识及笛卡尔乘积图Cm×Cn,Pm×Pn的控制数的相关结论,利用γ(Cm×Cn)≤γ(Pm×Cn)≤γ(Pm×Pn)这一不等式给出路与圈的笛卡尔乘积图Cm×Pn(m=2,3,4),Pm×Cn(m=2,3,4)的控制数.  相似文献   

6.
李炜 《黄冈师专学报》1997,17(1):9-12,42
借助于图G1和图G2的独立数、控制数,估计了合成图G1[G2]之独立数与控制数的上界。  相似文献   

7.
借助于图G1和图G2的独立数、控制数,估计了合成图G1[G2]之独立数与控制数的上、下界.  相似文献   

8.
利用概率方法给出图的k-全控制数的一个上界,并且推广了关于全控制数γt(G)的一个结果.  相似文献   

9.
利用概率方法给出图的k-全控制数的一个上界,并且推广了关于全控制数γt(G)的一个结果。  相似文献   

10.
设G=(V,E)是一个无孤立点的图,一个实值函数f:V→[0,1]满足∑v∈N(u)f(v)≥1对一切u∈V(G)都成立,则称f为图G的一个Fractional全控制函数。图的Fractional全控制数定义为γ0f()G=min{f(V)|f为图G的Fractional全控制函数},文章中研究了图的Fractional全控制问题,主要给出了关于联图的Fractional全控制数的一个上界,由此确定了几类特殊图的Fractional全控制数,并推广了部分已知结果。  相似文献   

11.
平均距离、距离独立数和距离控制数都是度量网络性能的重要参数.在某种程度上,平均距离比直径更能衡量网络的性能.确定一般图的距离独立数和距离控制数是NPC问题,对于给定的正整数d和l.确定特殊图类的距离独立数和距离控制数显得很重要.得到超立方体网络的平均距离,以及对于某些正整数d和l.超立方体网络的距离独立数和距离控制数.  相似文献   

12.
设图G=G(V,E),令函数f:V→{-1,1},f的权w(f)=∑v∈Vf[v],对v∈V,定义f[v]=∑u∈N[v]f(u),这里N[v]表示V中顶点v及其邻点的集合。图G的符号控制函数为f:V→{-1,1}满足对所有的v∈V有f[v]≥1,图G的符号控制数γs(G)就是图G上符号控制数的最小权,称其f为图G的γs-函数。研究了C2n图,通过给出它的一个γs-函数得到了其符号控制数。  相似文献   

13.
设图G=G(V,E),令函数f:E→{-1,1},f的权w(f)=∑x∈Ef[x],对x∈E中任一元素,定义f[x]=∑y∈N[x]f(y),这里N[x]表示E中x及其关联边的集合.图G的边符号控制函数为f:E→{-1,1},满足对所有的x∈E有f[x]≥1,图G的边符号控制数γS(G)就是图G上边符号控制数的最小权,称其f为图G的γS-函数.本文得到了Petersen图类的边符号控制数.  相似文献   

14.
令图G是无孤立点的无向图。 V(G)是图G的顶点集,D是V(G)的真子集。如果图G的每一个顶点至少与集合D中一点相邻,则集合D是图G的全控制集。 G中最小全控制集的顶点数称为G的全控制数,记为γt(G)。参考已有全控制数的知识及笛卡尔乘积 Cm□Cn、Pm□Pn 的全控制数的相关结论,利用γt(Cm□Cn )≤γt(Pm□Cn )≤γt(Pm□Pn )这一不等式给出了Cm□Pn(m =3,4)、Pm□Cn(n =2,4)的全控制数。  相似文献   

15.
设G=(V,E)是一个图,一个函数f:E→[0,1]如果对所有的边e∈E(G),都有∑e∈N(e’)f(e)≥1成立,则称f为图G的一个Fractional边全控制函数,简记为F边全控制函数,此处N(e’)表示G中与边e’相关联的边集。图G的F边全控制数定义为γ’tf(G)=min{∑e∈E(G)f(e)f是G的一个F边全控制函数}.本文得到了一般图的F边全控制数的若干界限,还确定了一些特殊图的F边全控制数。  相似文献   

16.
引入了关于图的符号路(点)控制概念,给出了对于任何一棵非平凡树T的符号路(点)控制数γP(G)的一个下界,即γP(T)≥1,又获得了满足γP(G)=V(G)的所有连通图一个特征。此外,还确定了圈的符号路(点)控制数。  相似文献   

17.
设G=(V,E)是一个图,一个实值函数f:V→[0,1]满足∑v∈N[u]f(v)≥1对一切u∈V(G)都成立,则称f为图G的一个Fractional控制函数。图G的Fractional控制数定义为γf(G)=min∑v∈V(G)f(v)f为图G的Fractional{}控制函数。本文主要解决了一类特殊图,即广义轮图的Fractional控制数。  相似文献   

18.
本文将图的符号边全控制引申为图的逆符号边全控制,并在此基础上研究图的逆符号边全控制数的性质.  相似文献   

19.
设G=(V,E)是一个图,一个函数f:V∪E→{-1,+}1,如果对每一个x∈E∪V,都有∑y∈Nt[x]f(y)≤0成立,则称f为图G的一个反符号全控制函数,其中Nt(x)表示G中与元素x相邻或相关联的元素之集,称为元素x的全邻域,Nt[x]=N(x)∪{x}为x的闭全邻域。规定图G的反符号全控制数定义为γrst(G)=max{∑x∈V∪Ef(x)f为图的反符号全控制函数}。得到了一般图的反符号全控制数的若干上界,并确定了圈Cn的反符号全控制数。  相似文献   

20.
设G=(V,E)是一个非空图,对于一个函数f:V(G)∪E(G)→{-1,1},则称f的权重为w(f)=∑x∈V(G)∪E(G)f(x)。若x∈V(G)∪E(G),定义f[x]=∑y∈NT[x]f(y)。如果对所有的x∈V(G)∪E(G)都有f[x]≥1,则称f是图G的一个全符号控制函数。G的全符号控制数定义为γ*s(G)=min{w(f)|f是图G的一个全符号控制函数}。该文给出到了图的全符号控制数的一个上界,并研究了完全二部图Km,n的全符号控制数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号