首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Classroom discourse can affect various aspects of student learning in science. The present study examines interactions between classroom discourse, specifically teacher questioning, and related student cognitive engagement in middle school science. Observations were conducted throughout the school year in 10 middle school science classrooms using the Electronic Quality of Inquiry Protocol, which is designed, among other things, to measure observable aspects of student cognitive engagement and discourse factors during science instruction. Results from these observations indicate positive correlations between students’ cognitive engagement and the following aspects of classroom discourse: questioning level, complexity of questions, questioning ecology, communication patterns, and classroom interactions. A sequential explanatory mixed-methods design provides a detailed look at each aspect of classroom discourse which showed a positive effect on student cognitive level during science instruction. Implications for classroom practice, teacher education, and professional development are discussed.  相似文献   

2.
This study explores the relationship between interaction rituals, student engagement with science, and learning environments modeled on communities of practice based on an ethnographic study of an eighth grade urban magnet school classroom. It compares three interactional events in order to examine the classroom conditions and teacher practices that can foster successful interaction rituals (IRs), which are characterized by high levels of emotional energy, feelings of group membership, and sustained interest in the subject. Classroom conditions surrounding the emergence of successful IRs included mutual focus, familiar symbols and activity structures, the permissibility of some side‐talk, and opportunities for physical and emotional entrainment. Sustained interest in the topic beyond the duration of the IR and an increase in students' helping each other learn occurred more frequently when the mutual focus consisted of science‐related symbols, when there were low levels of risk for participants, when activities involved sufficient challenge and time, and when students were positioned as knowledgeable and competent in science. The results suggest that successful interaction rituals can foster student engagement with topics that may not have previously held interest and can contribute to students' support of peers' learning, thereby moving the classroom toward a community‐of‐practice model. © 2006 Wiley Periodicals, Inc. J Res Sci Teach  相似文献   

3.
In classrooms from kindergarten to graduate school, researchers have identified target students as students who monopolize material and human resources. Classroom structures that privilege the voice and actions of target students can cause divisive social dynamics that may generate cliques. This study focuses on the emergence of target students, the formation of cliques, and professors' efforts to mediate teacher learning in a Master of Science in Chemistry Education (MSCE) program by structuring the classroom environment to enhance nontarget students' agency. Specifically, we sought to answer the following question: What strategies could help college science professors enact more equitable teaching structures in their classrooms so that target students and cliques become less of an issue in classroom interactions? The implications for professional education programs in science and mathematics include the need for professors to consider the role and contribution of target students to the learning environment, the need to structure an equitable learning environment, and the need to foster critical reflection upon classroom interactions between students and instructors. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 43: 819–851, 2006  相似文献   

4.
This qualitative, multi-case study explored the use of science-content music for teaching and learning in six middle school science classrooms. The researcher sought to understand how teachers made use of content-rich songs for teaching science, how they impacted student engagement and learning, and what the experiences of these teachers and students suggested about using songs for middle school classroom science instruction. Data gathered included three teacher interviews, one classroom observation and a student focus-group discussion from each of six cases. The data from each unit of analysis were examined independently and then synthesized in a multi-case analysis, resulting in a number of merged findings, or assertions, about the experience. The results of this study indicated that teachers used content-rich music to enhance student understanding of concepts in science by developing content-based vocabulary, providing students with alternative examples and explanations of concepts, and as a sense-making experience to help build conceptual understanding. The use of science-content songs engaged students by providing both situational and personal interest, and provided a mnemonic device for remembering key concepts in science. The use of songs has relevance from a constructivist approach as they were used to help students build meaning; from a socio-cultural perspective in terms of student engagement; and from a cognitive viewpoint in that in these cases they helped students make connections in learning. The results of this research have implications for science teachers and the science education community in developing new instructional strategies for the middle school science classroom.  相似文献   

5.
Geospatial technologies are increasingly being integrated in science classrooms to foster learning. This study examined whether a Web-enhanced science inquiry curriculum supported by geospatial technologies promoted urban middle school students’ understanding of energy concepts. The participants included one science teacher and 108 eighth-grade students classified in three ability level tracks. Data were gathered through pre/posttest content knowledge assessments, daily classroom observations, and daily reflective meetings with the teacher. Findings indicated a significant increase in the energy content knowledge for all the students. Effect sizes were large for all three ability level tracks, with the middle and low track classes having larger effect sizes than the upper track class. Learners in all three tracks were highly engaged with the curriculum. Curriculum effectiveness and practical issues involved with using geospatial technologies to support science learning are discussed.  相似文献   

6.
7.
Background: Recent research and curriculum reforms have indicated the need for diversifying teaching approaches by drawing upon student interest and engagement in ways which makes learning science meaningful. Purpose: This study examines the integration of informal/free choice learning which occurred during learning experiences outside school (LEOS) with classroom learning using digital technologies. Specifically, the digital technologies comprised a learning management system (LMS), Moodle, which fits well with students’ lived experiences and their digital world. Design and Method: This study examines three out-of-school visits to Informal Science Institutes (ISI) using a digitally integrated fieldtrip inventory (DIFI) Model. Research questions were analysed using thematic approach emerging along with semi-structured interviews, before, during and after the visit, and assessing students’ learning experiences. Data comprised photographs, field notes, and unobtrusive observations of the classroom, wiki postings, student work books and teacher planning diaries. Results: We argue, that pre- and post-visit planning using the DIFI Model is more likely to engage learners, and the use of a digital learning platform was even more likely to encourage collaborative learning. The conclusion can also be drawn that students’ level of motivation for collaborative learning positively correlates with their improvement in academic achievement.  相似文献   

8.
ABSTRACT

This study aimed to investigate the relationships among the middle school students’ perceptions of science teacher support, students’ motivation and students’ engagement in learning science. Student motivation was addressed with task value and academic self-concept while student engagement included aspects of agentic, behavioural, emotional and cognitive engagement. In the study, survey method was used and the data were collected though previously validated self-report questionnaires. Valid data were obtained from 1006 middle school students enrolled in one of the nine public schools in Turkey. The path analysis revealed that perceived science teacher’s support positively predicted students’ task value and academic self-concept in science. Furthermore, students who reported high levels of task value and academic self-concept showed higher levels of engagement in science. Accordingly, it seems important for science teachers to listen to the students, behave fairly and help them to solve their problems in order to motivate them for learning science and increase their engagement in science class.  相似文献   

9.
Teacher-researcher narrative accounts are essential and insightful for the science education field, yet they are few and far-between. In this forum, I engage in dialogue with Nicole Grimes’s auto-ethnographic narrative on the affordances her femme-Carribean identity allowed for some students to engage more deeply in science. While I agree with and applaud Grimes’s reflection on how her perceived social identity had positive effects on some students’ engagement in science, I trouble the notion of such a social identity being framed solely as an asset to student learning by examining the power dynamics inherent in the enacted nanny-child relationship. I also propose the need for deeper analyses on how a teacher’s social identity can impact students’ learning experiences in the science classroom by looking at how the boundaries of the science classroom are redefined and what additional resources are recruited that can foster deeper engagement.  相似文献   

10.
Student engagement that leads to enhanced learning outcomes involves three interdependent facets: behaviour, emotion and cognition. As such, learning activities that encourage deep learning and the intellectual challenging of minds should provide opportunities for reasoning and critical and creative thinking. An approach that resonates strongly with student engagement involves fostering student voice in the classroom, and the generation and utilization of students’ questions is one means of achieving this. Implicit in this approach is the need for both teachers and students to pose questions that engage and intellectually challenge thinking. In this pilot case study, eight volunteer teachers from one school chose to investigate their own practice by either focusing on their own questioning skills to foster student engagement in the classroom or, on how they could support their students to generate intellectually challenging questions that lead to increasing student voice, engagement and deeper learning in the classroom. Key findings were that who does the questioning is not an either-or dichotomy, and that significant pedagogical shifting requires a long-term focus. This shift is influenced by teachers’ commitment to using questioning as a pedagogical approach for enhancing student learning.  相似文献   

11.
Middle school has been documented as the period in which a drop in students’ science interest and achievement occurs. This trend indicates a lack of motivation for learning science; however, little is known about how different aspects of motivation interact with student engagement and science learning outcomes. This study examines the relationships among motivational factors, engagement, and achievement in middle school science (grades 6–8). Data were obtained from middle school students in the United States (N?=?2094). The theoretical relationships among motivational constructs, including self-efficacy, and three types of goal orientations (mastery, performance approach, and performance avoid) were tested. The results showed that motivation is best modeled as distinct intrinsic and extrinsic factors; lending evidence that external, performance based goal orientations factor separately from self-efficacy and an internal, mastery based goal orientation. Second, a model was tested to examine how engagement mediated the relationships between intrinsic and extrinsic motivational factors and science achievement. Engagement mediated the relationship between intrinsic motivation and science achievement, whereas extrinsic motivation had no relationship with engagement and science achievement. Implications for how classroom practice and educational policy emphasize different student motivations, and in turn, can support or hinder students’ science learning are discussed.  相似文献   

12.
For students to meaningfully engage in science practices, substantive changes need to occur to deeply entrenched instructional approaches, particularly those related to classroom discourse. Because teachers are critical in establishing how students are permitted to interact in the classroom, it is imperative to examine their role in fostering learning environments in which students carry out science practices. This study explores how teachers describe, or frame, expectations for classroom discussions pertaining to the science practice of argumentation. Specifically, we use the theoretical lens of a participation framework to examine how teachers emphasize particular actions and goals for their students' argumentation. Multiple-case study methodology was used to explore the relationship between two middle school teachers' framing for argumentation, and their students' engagement in an argumentation discussion. Findings revealed that, through talk moves and physical actions, both teachers emphasized the importance of students driving the argumentation and interacting with peers, resulting in students engaging in various types of dialogic interactions. However, variation in the two teachers' language highlighted different purposes for students to do so. One teacher explained that through these interactions, students could learn from peers, which could result in each individual student revising their original argument. The other teacher articulated that by working with peers and sharing ideas, classroom members would develop a communal understanding. These distinct goals aligned with different patterns in students' argumentation discussion, particularly in relation to students building on each other's ideas, which occurred more frequently in the classroom focused on communal understanding. The findings suggest the need to continue supporting teachers in developing and using rich instructional strategies to help students with dialogic interactions related to argumentation. This work also sheds light on the importance of how teachers frame the goals for student engagement in this science practice.  相似文献   

13.
Abstract

High school underrepresented minority students in the US are at an increased risk of dropping out of the STEM pipeline. Based on expectancy-value theory, we examined if Latino students’ perception of support from parents, siblings/cousins, teachers, and friends in 10th grade predicted their science ability self-concepts and values, which in turn predicted their classroom engagement. Survey data were collected from 104 Latino high school students and their science teachers. The findings suggest that adolescents’ perceptions of overall support and home-based support predicted adolescents’ science ability self-concepts at 10th grade while controlling for their 9th grade self-concepts. Although adolescents reported high support from teachers, teacher or school-based support alone was not a strong correlate of their motivational beliefs. Perceived support was indirectly related to classroom engagement through adolescents’ ability self-concepts. Feeling supported across home and school may be necessary to sustain adolescents’ science motivational beliefs and, in turn, their science classroom engagement.  相似文献   

14.
Classroom management practices were studied in middle school classrooms with positive interpersonal classroom climates, high levels of student engagement, and high levels of autonomy support. Students' motivational responses to autonomy-supportive instructional interactions were explored to understand variability within classroom management practices identified and described in this study as providing autonomy support. Our findings suggest proactive classroom management is enacted through instructional interactions wherein teachers scaffold students' autonomous self-regulatory capacities that sustain student engagement in classroom activities by supporting students' strategy use, transferring responsibility to students, encouraging students' to structure physical and social contexts to support learning, and promoting prosocial behavior.  相似文献   

15.
16.
17.
Classroom social integration with peers is vital to students’ school success, and all students can benefit from contact with peers who are different in various ways. Teachers are uniquely positioned to support the social adaptation of diverse learners but require an understanding of classroom dynamics. Moreover, teachers need strategies that help to leverage positive peer dynamics and that promote an engaged classroom climate for all students. Reflecting a person-in-context perspective, this review discusses the peer relations and social adjustment of students, particularly in classrooms with a diverse range of student characteristics and instructional needs, and proposes that teachers’ use of social dynamics management strategies can foster classroom communities that support the involvement and adjustment of all students.  相似文献   

18.
ABSTRACT

Reform initiatives around the world are reconceptualising science education by stressing student engagement in science practices. Yet, science practices are language-intensive, requiring students to have strong receptive and productive language proficiencies. It is critical to address these rigorous language demands to ensure equitable learning opportunities for all students, including English language learners (ELLs). Little research has examined how to specifically support ELL students’ engagement in science practices, such as argumentation. Using case-study methodology, we examined one middle school science teacher's instructional strategies as she taught an argumentation-focused curriculum in a self-contained ELL classroom. Findings revealed that three trends characterized the teacher’s language supports for the structural and dialogic components of argumentation: (1) more language supports focused on argument structure, (2) dialogic interactions were most often facilitated by productive language supports, and (3) some language supports offered a rationale for argumentation. Findings suggest a need to identify and develop supports for the dialogic aspects of argumentation. Furthermore, engaging students in argumentation through productive language functions could be leveraged to support dialogic interactions. Lastly, our work points to the need for language supports that make the rationale for argumentation explicit since such transparency could further increase access for all students.  相似文献   

19.
This article explores how to research the opportunities for emotional engagement that mobile technologies provide for the design and enactment of learning environments. In the context of mobile technologies that foster location-based linking, we make the case for the centrality of in situ real-time observational research on how emotional engagement unfolds and for the inclusion of bodily aspects of interaction. We propose that multimodal methods offer tools for observing emotion as a central facet of person–environment interaction and provide an example of these methods put into practice for a study of emotional engagement in mobile history learning. A multimodal analysis of video data from 16 pairs of 9- to 10-year-olds learning about the World War II history of their local Common is used to illustrate how students’ emotional engagement was supported by their use of mobile devices through multimodal layering and linking of stimuli, the creation of digital artifacts, and changes in pace. These findings are significant for understanding the role of digital augmentation in fostering emotional engagement in history learning, informing how digital augmentation can be designed to effectively foster emotional engagement for learning, and providing insight into the benefits of multimodality as an analytical approach for examining emotion through bodily interaction.  相似文献   

20.
Multiple external representations (MERs) have been widely used in science teaching and learning. Theories such as dual coding theory and cognitive flexibility theory have been developed to explain why the use of MERs is beneficial to learning, but they do not provide much information on pedagogical issues such as how and in what conditions MERs could be introduced and used to support students?? engagement in scientific processes and develop competent scientific practices (e.g., asking questions, planning investigations, and analyzing data). Additionally, little is understood about complex interactions among scientific processes and affordances of MERs. Therefore, this article focuses on pedagogical affordances of MERs in learning environments that engage students in various scientific processes. By reviewing literature in science education and cognitive psychology and integrating multiple perspectives, this article aims at exploring (1) how MERs can be integrated with science processes due to their different affordances, and (2) how student learning with MERs can be scaffolded, especially in a classroom situation. We argue that pairing representations and scientific processes in a principled way based on the affordances of the representations and the goals of the activities is a powerful way to use MERs in science education. Finally, we outline types of scaffolding that could help effective use of MERs including dynamic linking, model progression, support in instructional materials, teacher support, and active engagement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号