首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
若磁场不变,导体回路运动(切割磁场线),则产生动生电动势;若导体回路静止,磁场随时间变化,则产生感生电动势.而导线在变化的磁场中运动时既有动生电动势,又有感生电动势(此类问题为电磁感应中的难点).下面就此类问题举例分析.  相似文献   

2.
1 实验原理将一导体棒放在导轨上并且垂直磁场,导体通电后,在安培力作用下从静止开始运动。设导体在有效磁场中运动的距离为 S_0,从开始运动到停止,导体棒运动的总位移为 S,由动能定理得:F_安·S_0-F_1·S=0。若每次导体棒从同一位置开始运动,则 S_0不变,又滑动摩擦力 F_1不变,所以 F_安/S=F_1/S_0=常量,安培力正比于导体棒运动的总位移,  相似文献   

3.
相对于观察者静止的孤立带电导体上的电荷只能分布在导体的表面,且导体中各处的场强为零。当导体转动时,由于电荷的运动产生磁场,磁场和运动电荷发生相互作用,引起电行在导体中重新分布,导体中会出现空间电荷,且导体中电场强度不再为零。孤立的带电导体绕某一固定轴匀速转动时,运动电荷产生的电磁场满足的麦克斯韦方程组为方程组中的P为导体中的电荷体密度,V为电子运动的速度。在非相对论情况下,导体中的运动电子满足的运动方程为e(E+VXB)=mwXV(5)式中一e和m分别为电子的电量和质量.考察一半径为R的无限长带电导体,设…  相似文献   

4.
对金属载流导体在磁场中分别处于静止、与电流方向平行运动、与电流方向垂直运动三种情况下,用洛仑兹力说明安培力的机制。一般金属导体安培力的经典微观机制是:由于洛仑兹力的作用,致使载流导体中的电荷重新分布,平衡时,整个导体系统所受内力之和为零,所受外力的合力就是载流导体在宏观上受到的安培力。  相似文献   

5.
1.恒定磁场静止,外力牵引导体运动 例1如图1所示,位于水平面内的两根平行的光滑金属导轨处在匀强磁场中,磁场方向垂直于导轨所在的平面,导轨的一端与一电阻相连;具有一定质量的金属杆曲放在导轨上并与导轨垂直.现用一平行于导轨的恒力F拉杆ab,使它由静止开始向右运动.  相似文献   

6.
在电磁感应现象中,根据产生机理上的不同,可将感应电动势分为两类,即动生电动势和感生电动势.导体在磁场中做切割磁感线运动,而使导体两端产生的电动势称为动生电动势;由于磁场的变化而使与磁场相对静止的导体内产生的电动势称为感生电动势.本文旨在探讨在一个既有动生电动势又有感生电动势产生的电路中感应电动势的计算方法.  相似文献   

7.
电磁感应作用在导体内部感生的电流被称为傅科电流。导体在磁场中运动或导体静止但存在随时间变化的磁场(或两种情况同时出现),都可能造成磁力线与导体的相对切割。依电磁感应定律可知,在导体中必产生感应电动势,从而驱动电流。该方式引起的电流在导体中的分布随导体表面形状和磁通分布而不同,其路径往往如水中的漩涡,因此被称为涡流。但教师在教学中很难让学生理解其原理,即使学生理解也印象不深,难以记牢。因此,笔者用低成本材料制作  相似文献   

8.
1考题呈现 例1(2010年江苏卷)如图1所示,两足够长的光滑金属导轨竖直放置,相距为L,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直.一质量为m、有效电阻为R的导体棒在距磁场上边界h处静止释放.导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为I.整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨...  相似文献   

9.
导体在磁场中作切割磁力线运动时,导体中产生的动生电动势用公式(?)=Blv计算。众所周知,这个公式仅适用于直导体在匀强磁场中运动,而且直导体与运动方向、磁场方向三者互相垂直的情况。对弯曲的导线、非匀强磁场或者运动方向与磁场方向不垂直的情况,则不能套用公式(?)=Blv。本文就动生电动势中几个问题作如下讨论。一、关于导体切割磁力线的有效长度图1是直导体与运动方向v不垂直的例子,其中导体长度ab=l′,则l在与速度v  相似文献   

10.
电磁感应是中学物理的主干知识,也是电磁学的重点知识.同学们学习时应围绕“感应电流”抓住以下三个方面的内容.一、有无“有无”就是能准确判断感应电流是否产生.一般说来,产生感应电流的情形有两种:穿过闭合电路的磁通量发生变化和闭合电路的部分导体在磁场中作切割磁感线的运动.磁通量是否变化取决于两个因素:磁感应强度B和垂直磁场面积S⊥.当两者中有一个量变化,或都变化时均能引起磁通量的变化电路部分导体运动预示着剩余部分不运动(静止),则它切割磁感线运动的实质是改变了电路在磁场中的有效面积,从而使闭合电路的磁通量发生了变化.  相似文献   

11.
在做通电导体在磁场中受力运动的演示实验时,一般用铝导线作为通电导体,由于铝导线的直径小,实验的可见度低,不利于学生对实验的观察.为了增大实验的可见度,有利于学生观察通电导体在磁场中的运动情况,可制作一个空心导体.  相似文献   

12.
1洛仑兹力与安培力的比较①洛仑兹力是单个运动电荷在磁场中受到的力,而安培力是导体内有定向运动的自由电荷受到的洛仑兹力的宏观表现;②尽管安培力是导体内有定向运动的自由电荷受到的洛仑兹力的宏观表现,但并不能简单认为安培力就等于所有定向运动的自由电荷所受洛仑兹力之和,只有当导体静止时才能这样认为;③洛仑兹力恒不做功,而安培力却可以做功,安培力做正功可将电能转化为其它形式的能,安培力做负功可将其它形式的能转化为电能。2洛仑兹力与电场力的比较这两种力都是带电粒子在两种不同场中受到的场力,反映了磁场和电场都有力的性质,…  相似文献   

13.
金属导体中安培力的起因有三种情形:载流导体相对于观察者静止时;导体沿运动方向运动时;载流导体垂直于电流方向运动时.  相似文献   

14.
在做通电导体在磁场中受力运动的演示实验时,一般用铝导线作为通电导体,由于铝导线的直径小,实验的可见度低,不利于学生对实验的观察。为了增大实验的可见度,有利于学生观察通电导体在磁场中的运动情况,可制作一个空心导体。  相似文献   

15.
导体棒在磁场中的运动情景很复杂:有的做匀速运动,有的做匀变速运动,有的做变加速运动;涉及知识点多:导体切割磁感线、导体在磁场中的受力、电路知识等;运用的规律多:运动学规律、牛顿运动定律、能量守恒、左手定则、安培定则,因此成为电磁学中的一个难点。本文透析了导体棒在磁场中运动中的不同收尾情形,以帮助同学们掌握各种情况下的运动过程,  相似文献   

16.
在《电磁转换》一章中“,磁场对电流的作用、电动机”这一节是一个重点,也是难点.要学好这部分内容,可以先从弄清“两个实验、三个方向、一台机器”出发,然后再作适当的应用来实现学习要求.一、两个实验(1)通电导体在磁场中受力运动的实验在学习奥斯特实验的基础上进行逆向思维后,再观看通电导体在磁场中受力运动的实验,对于通电导体在磁场中受力运动的印象会很深刻.在继续探究中,会自然而然地发现,这个力的方向跟磁场方向和电流方向有关系.可是,有一种特殊情况,即当通电导体中电流方向与磁感线方向平行时,通电导体不受磁场对它的作用力.从…  相似文献   

17.
在磁场中,导体棒在平面导轨上滑动切割磁感线,导体棒中会产生感应电动势,闭合电路中会产生感应电流,磁场又会对导体棒施加安培力作用,影响导体棒的运动.从导体棒所在的导轨模型上看有平面导轨、斜面导轨、竖直导轨等.导体棒因涉及受力分析、  相似文献   

18.
电磁感应中,导体棒在磁场中的运动问题是很常见的.导体棒在导电滑轨上做切割磁感线运动时,会产生感应电动势,从而使闭合电路中的导体棒有感应电流流过,导体棒要受到安培力作用而使运动状态发生变化,因此感应电流与导体棒运动的加速度有相互制约的动态变化关系,经过足够长时间后导体棒趋于某一稳定状态.要解决导体棒在磁场中运动的问题,关键是在正确进行动态分析的基础上,判断导体棒最终的运动状态——即导体棒的收尾运动.  相似文献   

19.
一、对楞次定律的理解 1834年物理学家楞次提出了楞次定律:"感应电流的磁场总是阻碍引起感应电流的磁通量的变化".利用楞次定律可以分析两类电磁感应问题:一是磁场不变,导体回路相对磁场运动;二是导体回路不动,磁场发生变化.  相似文献   

20.
在现行的甚至以前的中学物理课本里,判定通电导体在磁场中受力的方向时用到左手定则,判定闭合回路的部分导体在磁场中作切刈磁力线运动产生的感生电流的方向时用到右手定则.这样,一个用到左手,一个用右手,有时容易混淆.我们可以来一个“精兵简政”,只用右手.恩格斯指出:“由于人的活动,就建立了因果观念的基础,这个观念是:一个运动是另一个运动的原因.”通电导体在磁场中受力作用时,导体在磁场中通电是原因,受到磁场的作用力是结果;闭合回路的部分导体在磁场中作切刈磁力线运动时,导体在磁场中运动是原因,产生感生电流是结果.两过程中都“以磁为媒介”.这样我们就可以只用右手,拇指表示原因,其余四指表示结果.我们的定则为:伸开右手,让拇指跟其余四指垂直,并且都跟手掌在同一平面内,使磁力线垂直穿过掌心.判定磁场对通电导体的作用力方向时,用拇指指向电流方向,则其余四指指向通电导体在导场中受力的方向;判定感生电流方向时,用拇指指向运动方向,则其余四指指向感生电流方向.如果我们把上述作为原因的量称为原因量,作为结果的量称为结  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号