首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
根据平面向量基本定理,我们知道:选定平面向量的一组基底→OA、→OB,那么对于平面内任一向量→OP,有且只有一对有序实数对x、y,使→OP=x→OA+y→OB.再结合共线向量定理,一个向量系数和为1的结论经常被用到:点P在直线AB上的充要条件是x+y=1(如图1)。  相似文献   

2.
人教社2001年版的《数学(试验修订本·必修)》教材高中第一册(下),5.3“实数与向量的积”这一节给出了两个定理:共线向量定理和平面向量基本定理,此后课本安排了一个例题:例5如图(此处图略),OA,OB不共线,AP=tAB(t∈R),用OA,OB表示OP.课本推得的结论是OP=(1-t)OA+tOB.这个例题仅指出:OP=(1-t)OA+tOB是A,B,P三点共线的必要条件,不难证明:OP=(1-t)OA+tOB也是A,B,P三点共线的充分条件.于是我们得到课本两个定理的一系列推论:推论1若平面向量OA,OB不共线,则点P与A,B共线的充要条件是:存在实数t,满足等式OP=(1-t)OA+tOB.不难…  相似文献   

3.
1一道课本例题人教社2004年版的高中数学第一册(下),5.3“实数与向量的积”这一节给出了两个定理:共线向量定理和平面向量基本定理.此后课本安排了一个例题.“例5如图(此处省略)OA、OB不共线,AP=t AB(t∈R),用OA、OB表示OP.”课本推得的结论是OP=(1-t)OA t OB.这个例题实际上证  相似文献   

4.
<正>在人教版高中数学新教材第二册(下B)中介绍了空间向量的共线定理:对空间任意两个向量a,b(b≠0),a与b共线的充要条件是存在唯一实数λ,使得a=λb.由这个共线定理,我们可以推导出它的一个推论:设OA,OB是平面内不共线的两个向量,则点A,B,P三点共线的充要条件是存在唯一的一对实数x,y,使得OP=xOA+yOB(x+y=1).在近几年的高考备考中,发现有不少的题目,如果能够充分用好这个共线定理的推  相似文献   

5.
新版高一数学 (下册 )第五章第三节《实数与向量的积》中 ,介绍了平面两个向量共线定理 :向量 b与非零向量 a共线的充要条件是有且只有一个实数λ,使得b =λa.由此 ,可以得到下列推论 :推论 1   OA、OB是平面内两不共线向量 ,向量OP满足 :OP =a OA +b OB( a,b∈ R) ,则 A、P、B三点共线的充要条件是 a +b =1.证明 :( 1)若 a +b=1,则 A P =OP - OA =( a -1) OA +b OB =b( OB - OA ) =b AB,故 AP与 A B共线 ,从而 A、P、B三点共线 ;( 2 )若 A、P、B三点共线 ,则存在唯一实数λ,使得AP =λAB,即 OP - OA =λ( OB - OA …  相似文献   

6.
由平面向量基本定理知,对平面内一组基底OA、OB及任一向量OP,存在唯一的一对实数λ、μ,使OP=λOA+μOB.文[1]称入、M为平面向量基本定理系数,并探讨了平面向量基本定理系数等值线(等和线、等差线、等商线、等积线)的相关性质,但对于等值线的几何意义(如何求“值”)并未作深入探究.  相似文献   

7.
对于平面向量中的三点共线结论:,OP=x,OA+y,OB(x、y∈R),若x,y满足x+y=1,则得出A、B、P三点共线,反之也成立.解决平面向量的三点共线问题时,可以结合线性规划,将两者的内容融合起来合成一个有一定思维量的中档题型,有利于考查学生的思维能力和融会贯通能力.  相似文献   

8.
平面向量中有关共起点的三个向量问题,内容丰富,形式多样,方法灵活.现分类举例说明如下.类型一:共起点的三个向量的终点共线P是平面OAB(O∈/AB)上的一个动点,且OP=x·OA+y·OB(x,y∈R),若P,A,B三点共线,则x+y=1;反之,若x+y=1,  相似文献   

9.
高考命题注重知识的整体性、综合性 ,常在知识的交汇处设计试题 .高中新教材增加了平面向量这一新内容 ,由于平面向量既具有几何形式 ,又具有代数形式 ,因而它成为中学数学知识的一个交汇点 ,备受命题者的青睐 .平面向量与解析几何的结合将是高考命题的趋势 .本文通过例题说明用平面向量解决解析几何问题 ,使二者达到完美结合 .一、基本知识( 1)向量共线定理 :向量 b与非零向量 a共线的充要条件是有且只有一个实数λ,使得 b =λa.推论 :OA ,OB是平面内两不共线向量 ,对于向量OP总存在 a,b满足 :OP =a OA + b OB( a,b∈ R) ,则A、P、B…  相似文献   

10.
正平面向量的基本定理指出:如果→OP1,→OP2是同一平面内的两个不共线的向量,那么对于这个平面内的任一向量OP,有且仅有一对实数x,y,使→OP=x→OP1+y→OP2(x,y∈R).此定理处于平面向量知识的核心地位,是几何问题向量化的理论基础.它说明了只要在平面内取定一组基底,那么平面内的任一向量都可用这组基底进行唯一的线性表示,这个过程充分地体现了数学化的过程,其形式化表达展现了数学结构体系的严谨性和逻辑性.  相似文献   

11.
陈题再探     
陈定昌 《中学教研》2014,(10):30-31
文献[1]曾就一道平面向量的陈题“设OA,OB为平面内不共线的2个向量,且OC=XOA+yOB(x,Y∈R),则A,B,C共线的充要条件为x+y=1.”在平面范围内作了新探,给出了几个鲜为人知的结论.笔者最近又发现,这些结论可推广到空间.引理1设OA,OB,OC为空间的一组基底,且OD=xOA+yOB+zOC(x,y,z∈R),则A,B,C,D共面的充要条件为x+y+z=1.  相似文献   

12.
李红春 《高中生》2013,(2):26-27
由平面向量基本定理可以得到如下结论:已知向量→OA,→OB不共线,且→OP=→αOA+→βOB(α,β∈R),则A,B,P三点共线的充要条件是α+β=1.以这个结论为基础,通过简单的拓展,可以直观、快捷地解决一类与向量有关的最值问题.  相似文献   

13.
正平面中有关三点共线的一个重要的定理:定理1:设OA,OB为平面内不共线的两个向量,且OC=xOA+yOB(x,y∈R),则A,B,C共线的充要条件是x+y=1.文[1]探究了以上定理中将"x+y=1"中右边的"1"一般化后动点C的轨迹问题,得到了如下的结论:定理2:设O,A,B为平面α内不共线三点,OC=xOA+yOB(x,y∈R),过O与直线AB平行的直线为ι0,则满足x+y=k(k∈R)的动点C的轨迹是一条平行(重合)于ι0  相似文献   

14.
正结论1 P是平面OAB(OAB)上的一个动点,→OP=→x OA+→y OB(x,y∈R),若点P,A,B共线,则x+y=1;反之,若x+y=1,则点P,A,B共线.结论 1可作进一步推广:结论 2若点P与O落在直线AB的2侧,则有x+y1,反之也成立.证明设OP与AB所在的直线交于点P',则存在实数λ,使得→OP=λ→OP'且λ1.由上述定理  相似文献   

15.
研究全日制普通高级中学教科书(试验修订本)数学·第一册(下)p.107的例5,得: 定理1 平面内,OA→,OB→不共线,则点P在直线AB上的充要条件是:存在实数λ,μ,使得OP=λ  相似文献   

16.
<正>设OA→、OB→是平面的一组基底,该平面内任一向量OP→,总存在唯一的一对实数λ、μ有OP→=λOA→+μOB→成立.这就是平面向量基本定理.平面向量基本定理是平面向量这一章最基本的内容之一.它是在学生掌握了向量的基本概念、向量的线性运算的基础上学习的,是向量坐标表示的逻辑前提,是用向量法求解几何问题的重要理论基础.从近几年的高考、竞赛试题明显感觉到对这个基本定理的考查力度,尤其对定理  相似文献   

17.
杨立求 《高中生》2013,(6):26-27
由平面向量基本定理可以得到如下结论:已知向量OA,OB不共线,且OP=αOA+βOB(α,β∈R),则A,B,P三点共线的充要条件是α+β=1.以这个结论为基础,通过简单的拓展,可以直观、快捷地解决一类与向量有关的最值问题.一、对两个基本问题的思考  相似文献   

18.
在人教A版《普通高中课程标准实验教科书(必修)·数学4》第二章中给出了共线向量定理:向量a(a≠0)与b共线,当且仅当存在唯一一个实数λ,使b=λa.根据这一定理,引申为:如图1,若(→OA)、(→OB)不共线,且=(→AP)=t(→AB)∈R),则有(→OP)=(1-t)(→OA)+(→OB),这一结论是判断平面内三点共线的一个充要条件,事实上,在空间立体几何图形中同样也是适用的,笔者以2012年高考立体几何题为实例,对这一结论的妙用进行简单的探索,供读者思考.  相似文献   

19.
根据平面向量基本定理,可以得到如下结论:如果(→OA)、(→OB)是同一平面内的两个不共线向量,那么,对于平面内的任一向量(→OC),有且只有一对实数λ、μ,使(→OC)=λ(→OA)+μ(→OB).据此,还可以得到几个更进一步的结论,而且它们在近几年高考的向量题中屡有应用.  相似文献   

20.
众所周知,由平面向量基本定理可以得到如下结论:"已知向量OA、OB不共线,且OP=αOA+βOB(α,β∈R),则A、B、P三点共线的充要条件是α+β=1".笔者发现以这个结论为基础通过简单的拓展,可以直观、快捷地解决一类和向量有关的最值问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号