首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
命题:△ABC的外接圆半径R与内切圆半径间成立不等式:R≥2r。证:(见原文图)过△ABC的顶点作对边的平行线,三直线围成△A′B′C′,则△ABC∽△A′B′C′,K=AB/A′B′=1/2。作外接圆的三条切线,分别平行于△A′B′C′的三边,围成△A″B″C″,(使△ABC的外接圆在为△A″B″C″的内切圆),△ABC∽△A″B″C″、  相似文献   

2.
三角形的“外心”、“垂心”、“重心”共线,该直线称为欧拉线。欧拉线反映了三心之间的一种内在联系。三角形的“外心”、“垂心”、“重心”之间还有许多有趣的性质。 一、若△ABC的外心为O、重心为G、垂心为H,容易证明这三心之间的距离具有度量关系GH=2OG 二、若锐角△ABC的三边中点分别为D、E、F,△DEF的高线足分别为D′、E′、F′,容易证明△ABC的外心O是△DEF的垂心,又是△D′E′F′的内心;若△ABC是钝角三角形,则△ABC的外心O是△DEF的垂心,又是△D′E′F′的一个傍心。  相似文献   

3.
本刊1991年第5期刊登了第一届浙江省高师院校数学联赛试题及解答,其中的第五大题是:已知AD′、BE′、CF′、为非钝角三角形ABC的三条中线,它们分别交△ABC的外接圆于D、E、F 点,G为△ABC的重心,R为外接圆半径。求证:GD CE GF≥8/3R。下面是刊登的解答的后半部分: 如△ABC为非钝角三角形,则外心O位于它的内部或一边之上。不妨设点O位于△ABG的内部或边上,如图。这时2R=AO BO≤AG BG  相似文献   

4.
有这样一道立体几何题:平面a过△ABC的一边BC,△ABC是△ABC在a内的射影,二面角A-BC-A′=(如图1).求证:S_(△ABC)=S_(△ABC)·cos证明:过A在△ABC中作AD⊥BC交BC于D∵AA′⊥平面a,由三垂线定理逆定理有A′D⊥BC,∴∠ADA′为二面角A-BC-A′的平面角,即∠ADA′=∴A′D=  相似文献   

5.
定理 设D是△ABC的边BC中点,则S_△ABD=S_△ACD。这是中线的一个性质,本文巧用这一性质解两道竞赛。 例1 (81年芜湖市竞赛题)如图1,AA′,BB′,CC′是△ABC的外接圆直径,试证:S_△ABC=S_△ABC′ S_△BCA′ S_△CAB′。  相似文献   

6.
每期一题     
题:过锐角三角形△ABC顶点分别作该三角形外接圆的三条直径AA′、BB′、CC′,则△ABC的面积等于△Ab′C、△CA′B、△BC′A的面积之和(芜湖市初中数学竞赛命题小组)  相似文献   

7.
难题征解     
52.锐角△ABC中,AD、BE、CF是三条高,H为垂心,记△ABC、△HBC、△HCA、△HAB的外接圆半径之和为m,内接圆半径之和为n,求证m+n=△ABC周长。 (安徽怀中黄全福提供) 53 设△ABC的旁切圆半径和面积分别为r_a、r_b、r_c、△,△A′B′C′的三边和面积分别为a′、b′、c′、△′。证明或否定r_a/a′+r_b/b′+r_c/c′≥3 3~(1/2)/2 (△/△′)~(1/2)等号当且仅当△ABC与△A′B′C′均为正三角形时成  相似文献   

8.
运动可以归纳为平移、旋转、翻折3种基本变换的组合,它们共同的特点是:保持距离不变、夹角不变、面积不变、点的共线性不变、线的共点性不变。如△ABC经运动变为△A′B′C′,则△ABC≌△A′B′C′。  相似文献   

9.
贵刊在一九八四年第一期每周一题中刊登了吴苏同志的一篇文章。那里他用六种方法证明了如下命题:如图:ABC和A′B′C′是二正三角形,P、Q、R分别是AA′、BB′、CC′中点,则△PQR亦是正三角形。(芜湖市1983年数学竞赛题。) 但该题只就正三角形情况作出了证明。事实上如果把它推广成更一般的形式仍然可以。本文想就△ABC∽△A′B′C′情况予以证明。题:设△ABC∽△A′B′C′,(两三角形相应顶点顺序相同)P、Q、R分别是  相似文献   

10.
由正弦定理出发,我们可以得到如下定理:△ABC中,以sinA、SinB、sinC为边可以构造△A′B′C′。且△ABC∽A′B′C′,△A′B′C′外接圆直径为1。证明:设△ABC外接圆半径为R, sinA+sinB=1/2R (a+b)>1/2R·C=sinC。同理可证 sinA+sinC>sinB,sinB+sinC>sinA。因此以sinA、sinB、sinC为边可以构造△A′B′C′。由正弦定理 a/sinA=b/sinB=c/sinC,因此△ABC∽△A′B′C′,则A=A′,B=B′,C=C′。设△A′B′C′外接圆半径为R′,对△A′B′C′施行正弦定理,则sinA/sinA′=2R′=1。由这个定理出发,有下面的二个应用。一、关于三角形中一些恒等式和不等式的互证  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号