首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
有这样一道习题:证明:若a+b+c=1,则√4a+1+√4b+1+√4c+1≤5。这道习题在不止一本书中出现。四川人民出版社出版的苏联瓦西里夫斯基著《中学数学解题训练》中还作了错误的证明如下。显然 4a+1~(2/1)=(4a+1)·1~(2/1) ≤1/2[(4a+1)+1]=2a+1 类似可得 4b+1~(2/1)≤2b+1, 4c+1~(2/1)≤2c+1  相似文献   

2.
二次函数f(x)=ax2+bx+c(a≠0),若a>0,△=b2-4ac≤0,则f(x)≥0;若a<0,△=b2-4ac≤0,则f(x)≤0. 二次方程ax2+bx+c=0(a≠0)有实根,则△=b2-4ac≥0. 以上性质,我们可以用来证明不等式. 例1 已知a,b∈R,且b>0.求证:a2+b2>3a-2ab-3. 证明:被证不等式可变形为  相似文献   

3.
新版高中数学教材第二册 (上 )有这样几道习题 .第 1 1页习题 6 .2第 1题 ,求证 :(a + b2 ) 2 ≤ a2 + b22 可以改写成 a2 + b2 ≥(a + b) 22 .第 1 6页习题 6 .3第 1 (2 )题 ,求证 :a2 + b2+ c2≥ ab+ bc+ ca可以变形为 :3 (a2 + b2 +c2 )≥ a2 + b2 + c2 + 2 (ab+ bc+ ca) ,所以 a2+ b2 + c2≥ (a + b+ c) 23 .第 3 1页第 5题 ,求证 :3 (1 + a2 + a4 )≥ (1+ a + a2 ) 2 ,则是上题的一个特例 .由此 ,我们可以推广之 ,得 :定理 :ai∈ R,i =1 ,2 ,… ,n,则当 n≥ 2时∑ni=1a2i ≥(∑ni=1ai) 2n (1 )证明 :用数学归纳法n =2时 ,a21+ a22 ≥ …  相似文献   

4.
题目 已知a、b、c为正实数.证明:a2 b2 c2 abc=4a b c≤3.(第20届伊朗数学奥林匹克(第2轮))文[1]利用三角法给出了证明,本文给出一种代数证明.证明:若a、b、c都大于1,或者都小于1,显然不满足题设条件.因此,a、b、c中一定有两个或者都不大于1,或者都不小于1,不妨设为a、b.则(1-a)(1-b)≥0,即 ab≥a b-1.①由a2 b2≥2ab,有4=a2 b2 c2 abc≥2ab c2 abc,即 ab(2 c)≤4-c2.于是,ab≤2-c.②由①、②,有a b c≤3.一道赛题的简证@羊明亮$湖南师范大学附属中学广益高中!410081[1] 第20届伊朗数学奥林匹克(2002—2003)[J].中等数学2004增刊.70.…  相似文献   

5.
文[1]有这样两个不等式: 若a, b∈R+, a+b=1, 则 4/3≤1/(a+1)+1/(b+1)<3/2,(1) 3/2<1/(a2+1)+1/(b2+1)≤8/5.(2) 文[2]建立了如下两个新不等式: 若a, b∈R+, a+b=1,则 3)/2<1/(a3+1)+1/(b3+1)≤16/9,(3) 1)/(an+1)+1/(bn+1)>3/2.(4) 且在文末提出如下猜想:  相似文献   

6.
两个不等式的统一证明及推广   总被引:1,自引:0,他引:1  
在许多数学杂志和复习资料中都可见到这样两个不等式问题: 问题1 已知 a>0, b>0,且 a b=1,求证: (2a 1)~(1/2) (2b 1)~(1/2)≤2 2~(1/2) 问题2 已知a>O,b>O,c>0,且a b c=1,求证: (3a 1)~(1/2) (3b 1)~(1/2) (3c 1)~(1/2)≤3 2~(1/2) 证明 这两个不等式的证法不止一种,但用均值换元法较简单,现证明如下:  相似文献   

7.
基本不等式a2+b2≥2ab在不等式的证明中起重要作用,但有些不等式直接用它去证明比较困难,而应用该不等式的变形去证明却比较方便. 变形1a2+b2≥2ab a2+b2≥1/2(a+b)2. 例 1 已知 a,b,c∈R+,且a+b+c=5,a2+b2+c2=9,试证明:1≤a、b、c≤7/3. 证明:由已知 a+b=5-c,a2+b2≥9-c2,∵a2+b2≥1/2(a+b)2,∴9-c2≥1/2(5-c)2,∴3c2-10c+7≤0,∴1≤c≤7/3,同理1≤a≤7/3,1≤b≤7/3. 例2 设a,b∈R+,且a+b=1,求证:(a+1/2)2+(b+1/b)2≥25/2.  相似文献   

8.
1.若遇a≤x~2 y~2≤b(a,b∈R~ ),可作代换x=t·cosφ,y=tsinφ,其中a~(1/2)≤t≤b~(1/2) 例1 已知1≤x~2 y~2≤2,求w=x~2 xy y~2的最值. 解:∵1≤x~2 y~2≤2,∴设x=tcosθ,y=tsinθ,其中1≤t≤2~(1/2),∴w=t~2cos~2θ t~2cosθsinθ t~2sin~2θ=t~2·(1 (1/2)sin2θ),而(1/2)≤1 sin2θ≤(3/2),∴(1/2)≤w≤3. 2.若遇b~2x~2 a~2y~2=a~2b~2(a,b∈R~ ),可作代换x=acosθ,y=bsinθ(此处要注意解析几何中椭圆、双曲线的参数方程的应用) 例2 已知x、y满足x~2 4y~2=4,求w=x~2 2xy 4y~2 x 2y的最值.  相似文献   

9.
众所周通,对任二正实数,总有(ab)~(1/2)≤(1/2)(a+b),这两者之间还存在别的平均? 杨镇抗等人在[1]、[2]、[3]中获得了不等式链:(ab)~(1/2)≤L(a,b)≤(1/?)(a+b),(ab)~(1/2)≤E(a,b)≤(1/2)(a+b),文家金在[4]中把它们推广为:(ab)~(1/2)≤…≤L_K(a,b)≤…≤L_1(a,b)≤E_1(a,b)≤…≤E_K(o,b)≤…≤(1/2)(a+b),林同坡在[5]中指出:当γ=1/3时,L(a,b)≤M_γ(a,b);当γ<1/3且a≠b时,此不等式不成立。王挽澜、陈计在[5]中将此不等式作了如下推广:设a,b,a′,b′∈R~+,且(a/b)≥1,(a′/b′)≥1,则。本文进一步加强和推广了上述几个结果。  相似文献   

10.
从所周知,欧拉不等式2r≤R2(3)~(1/3)r≤3~(1/3)R。(1765)我们可加细到2(3)~(1/3)r≤(abc)1/3≤1/3(a b c)≤3~(1/3)R;(1)2(3)~(1/3)r≤(abc)~(1/3)≤{P integral from n=1 to ∞( 8)[(a x)(b x)(c x)]~-(P 1)3dx}-1/P≤1/3(a b c)≤3~(1/3)R;(2)2(3)~(1/3)≤(abc)~(1/3){P integral from n=1 to ∞( 8)[(a x)(b x)(c x)]~-(P 1)/3dx}~-(1/P)≤{Pintegral from n=1 to ∞( 8)λ~(-1)[(ι λ)(a x))~(1/3)(ι λ(b x))~(1/3)(ι λ(c x))~(1/3)-ι]~(-P-1)dx}~(-1/P)≤1/3(a b c)≤3~(1/3)R。(3)  相似文献   

11.
一类三元分式不等式及其证明   总被引:1,自引:1,他引:0  
本文旨在介绍几个新颖有趣的三元分式不等式,并给出它们的巧妙证明.例1已知a,b,c为满足abc=1的正数,求证:1/(2 a) 1/(2 b) 1/(2 c)≤1.证明:因bc ca ab≥3(abc)~(1/3)=3,故1-(1/(2 a) 1/(2 b) 1/(2 c)) =1-(bc ca ab 4(a b c) 12)/((2 a)(2 b)(2 c))  相似文献   

12.
2010年《数学周报》杯全国初中数学竞赛   总被引:1,自引:1,他引:0  
一、选择题(每小题7分,共35分) 1.若a/b=20,b/c=10,则a+b=b+c的值为( ). (A)11/21 (B)21/11 (C)110/21 (D)210/11 2.若实数a、b满足1/2a-ab+b2+2=0,则a的取值范围是( ). (A)a≤-2 (B)a≤-2或a≤4 (C)a≥4 (D)-2≤a≤4  相似文献   

13.
初等数学中的有些问题,如果利用向量来解决,往往可以收到化繁为简,化难为易的效果.一、应用向量证明不等式例1 己知a,b,c∈R,且a b c=1,求证:a~2 b~2 c~2≥1/3证明:设(?)=(a,b,c),(?)=(b,c,a),(?)=(c,a,b)则(?) (?) (?)=(a b c,b c a,c a b)= (1,1,1),而|(?) (?) (?)|≤|(?)| |(?)| |(?)| ∴3~(1/2)≤ 3(a~2 b~2 c~2)~(1/2),即a~2 b~2 c~2≥1/3二、应用向量求三角函数值  相似文献   

14.
著名的Gerretsen不等式是:若s、R、r为△ABC的半周长及外接圆、内切圆半径,则16r-5r~2≤s~2≤4R~2+4Rr+3r~2 (1) 不等式(1)在证明三角不等式时有着广泛的应用。本文先给出s~2≤4R+4Rr+3r的一个加强: 命题1 s~2≤R(4R+r)~2/2(2R-r) (2) 证明 设a、b、c为△ABC三边长,将三角形中恒等式s-a=r/tg(A/2)和a=2RsinA相加,整理得:  相似文献   

15.
在△ABC中有余弦定理:a~2=b~2 c~2-2bc·cosA,变形得: a~2=(b c)~2-2bc(1 cosA) =(b c)~2-4bc·cos~2A/2 ≥(b c)~2-(b c)~2cos~2A/2 =(b c)~2sin~2A/2. 由此得sinA/2≤a/(b c)(当且仅当b=c时取等号).同理可得sinB/2≤b/(a c)(当且仅当a=c时取等号);  相似文献   

16.
几道数学竞赛题的简解   总被引:1,自引:0,他引:1  
题1设a、b、c为正实数,且a2 b2 c2 abc=4.证明:3abc≤ab bc ac≤abc 2.(第30届美国数学奥林匹克)证明:由4=a2 b2 c2 abc≥abc 3(abc)32,即abc≤1可知ab ac bc≥3(abc)32≥3abc.由题设知,a、b、c中一定有且只有两个数或者都不大于1,或者都不小于1.不妨设这两个数为a、b.则c(a-1)  相似文献   

17.
设长方体三度为 x、y、z,x≤y≤z,体积 V=xyz,表面积 S=2(xy+yz+zx),棱长 L=4(x+y+z).文[1]得到 V=S=L型空间数不存在;V=S 型的有9个;得到 L=V 型的一个:48;S=L 型的一个:24.本文做进一步探索.探索1 V=L 型空间数.记 a=xy,b=zx,c=yz,则 V=L 化为(1/a)+(1/b)+(1/c)=1/4(a≤b≤c).①(1)可得5≤a≤12,a=5时,21≤b≤40.由于 x=(abc)~(1/2)/c,y=(abc)~(1/2)/b,z=(abc)~(1/2)/c 知 abc 须为平方数.由1/b+1/c=1/20,得 abc=(100b~2)/(b-20),可见须 b-20为平方数,b 可取21,24,29,36,代入方  相似文献   

18.
题目已知a,b,c∈R 且满足5a4 4b4 6c4=90,求证:5a3 2b3 3c3≤45. 文[1]为利用四项均值不等式4abcd≤a4 b4 c4十d4证明该题目,进行了技巧性强的变形,本文就用现行教科书中的二项均值不等式2ab≤a2 b2探究该题目的证明.  相似文献   

19.
a+b+c=0(a,b,c∈R),有许多简捷、优美的结论,且有着广泛的用途.结论1 若 a+b+c=0,则 b~2≥4ac 或a~2≥4bc 或c~2≥4ab.证明:因为 a+b+c=0,所以 b=-(a+c),b~2=(a+c)~2=a~2+c~2+2ac≥2ac+2ac=4ac,即 b~2≥4ac.同理可得,a~2≥4bc,c~2≥4ab.结论2 若 a+b+c=0,则 a~3+b~3+c~3=3abc.证明:因为 a+b+c=0,所以 a+b=-c,(a+b)~3=-c~3,即 a~3+3a~2b+3ab~2+b~3+c~3=0,也即 a~3+3ab·(a+b)+b~3+c~3=0,又 a+b=-c,所以 a~3+b~3+c~3  相似文献   

20.
1逆向思维的教材原型题与近年高考题 例1 (新课标选修4-5第25页习题 2.2第2题)已知a,b,c,∈R+,用综合法证: (ab+a+b+1)(ab+ac+bc+c2)≥16abc. 证明 (ab十a+b+1)(ab+ac+bc+c2)=(a+1) (b+1)(a+c) (b+c)≥2√a×2b×2√ac×2√bc=16abc. 例2 (2010年重庆文科第10题)若a,b,c>0,且a2+2ab+2ac+4bc=12,则ab+c的最小值是().  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号