首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Recently, the mode approximation method (MAM) has been adopted to analyze beam elements against blast load. However, in real cases, the main structural element of an underground structure is slab and side wall since they not only support the structure itself but also may sustain external loads from blast, earthquake, and other kinds of impact. In the present study, the MAM is extended from beam to plate elements and the soil-structure interaction is considered and simplified when calculating structural response under blast load. Pressure-impulse diagrams are generated accordingly for further quick damage assessment.  相似文献   

2.
The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA.The multi-material Eulerian and Lagrangian coupling algorithm was adopted.A fluid-structure coupling finite element model was established which consists of Lagrange element for simulating steel frame structures and concrete ground,multiple ALE element for simulating air and TNT explosive material.Numerical simulations of the blast pressure wave propagation,structural dynamic responses and deformation,and progressive collapse of a five-story steel frame structure in the event of an explosion near above ground were performed.The numerical analysis showed that the Lagrangian and Eulerian coupling algorithm gave good simulations of the shock wave propagation in the mediums and blast load effects on the structure.The columns subjected to blast load may collapse by shear yielding rather than by flexural deformation.The columns and joints of steel beam to column in the front steel frame structure generated enormous plastic deformation subjected to intensive blast waves,and columns lost carrying capacity,subsequently leading to the collapse of the whole structure.The approach coupling influence between structural deformation and fluid load well simulated the progressive collapse process of structures,and provided an effective tool for analyzing the collapse mechanism of the steel frame structure under blast load.  相似文献   

3.
The influence of the change of structure plane size on seismic response was studied for a soil-structure interaction system. Based on the finite element method, a soil-structure interaction calculation model was established to analyze the seismic response by changing the structure plane size and choosing different earthquake waves for different soil fields. The results show that when the natural periods of vibration for different structure plane sizes are close, under the same earthquake wave, the total displacement on the top layer of the structure and the foundation rotation displacement decrease with the increase of structure plane size, and the proportion of superstructure elastic selfdeformation displacement to the total displacement increases with the increase of structure plane size. While for different types of sites and seismic waves, under the horizontal and vertical seismic waves, the seismic responses of different plane sizes have a similar change rule.  相似文献   

4.
Strain growth is a phenomenon observed in containment vessels subjected to internal blast loading. The elastic response of the vessel may become larger in a later stage compared to its response during the initial stage. The dynamic responses of infinitely long cylindrical containment vessels subjected to uniformly-distributed internal blast loading are studied using LS-DYNA. The development of bending modes and the interaction between the breathing mode and bending modes are observed. The methodology developed for dynamic elastic buckling analysis is employed to study the strain growth phenomenon in explosion containment vessels. It is shown that the dynamic instable vibration of a containment vessel is the basic mechanism of strain growth.  相似文献   

5.
Simulation of Airblast Load and Its Effect on RC Structures   总被引:1,自引:0,他引:1  
In the analysis of a structure subjected to an explosion event, the determination of the blast load constitutes a crucial step. The effect of the blast load on the structure depends not only on the peak shock overpressure, but also the impulse (hence the duration). For structures with a regular geometry, the blast load may be fairly well estimated using appropriate empirical formulae; however, for more complex situations, a direct simulation using appropriate computational techniques is necessary. This paper presents a numerical simulation study on the prediction of the blast load in free air using a hydrocode, with focus on the sensitivity of the simulated blast load to the mesh grid size. The simulation results are compared with empirical predictions. It is found that the simulated blast load is sensitive to the mesh size, especially in the close-in range, and with a practically affordable mesh grid density, the blast load tends to be systematically underestimated. The study is extended to internal blast cases. An example concrete slab under internal explosion is analyzed using a coupled analysis scheme. The internal blast load from the simulation is examined and the response of the RC slab is commented.  相似文献   

6.
The dynamic characteristics and failure modes of steel reinforced concrete (SRC) columns subjected to blast loading are complicated because of the transient stress wave in the SRC columns and the interaction between steel and concrete. This paper presents a numerical simulation of the response of SRC columns subjected to blast loading using hydrocode LS-DYNA. In the numerical model, a sophisticate concrete material model (the Concrete Damage Model) is employed with consideration of the strain rate effect and the damage accumulation. An erosion technique is adopted to model the spalling process of concrete. The possible failure modes of SRC columns are evaluated. It is observed that the failure of SRC columns subjected to blast load can generally be classified into three modes, namely, a direct failure in concrete body due to the stress wave, a transverse shear failure near the support sections due to the high shear force, and a flexural failure pertaining to large local and global deformation of the reinforcing steel.  相似文献   

7.
Design of offshore wind power foundation with multi-bucket   总被引:1,自引:0,他引:1  
Three- and four-bucket offshore wind power foundations with a new form of force-transferring structure are proposed in this paper, and the integrated finite element model of foundation-soil-transition structure is established by using ABAQUS. The carrying capacity of the proposed foundations is studied under vertical load, horizontal load and bending moment. It can be seen that the vertical bearing capacity of multi-bucket foundation can be roughly estimated by the vertical bearing capacity of single-bucket; the horizontal bearing capacity of the three-bucket foundation scheme is controlled by displacement, while that of the four-bucket foundation scheme is controlled by the internal forces of soils. Moreover, the carrying capacity is provided by the overall structure formed by multi-bucket before soil failure. Compared with the conventional single-bucket foundation, there are mainly tension and pressure that are applied to the multi-bucket foundation, so that the carrying capacity of the foundation can be fully utilized. The probability of soil failure can be well reduced with the proposed multi-bucket foundation, and the stress transmission of force-transferring structure is more consistent through steel beams with variable cross-section.  相似文献   

8.
To study the internal blast load, a lot of small scale internal blast experiments have been conducted. For those experiments, the influence of explosive density generally was not taken into account while it was simple to have slight density differences in application. To analyze the influence of explosive density on small scale internal blast experiments, the finite element code LS-DYNA was employed and the numerical model was established. The numerical model was validated against published experimental data and the result shows a good agreement. We found that that both the peak overpressure and impulse increase with the density of charge. Empirical equations were fitted using the calculation results to evaluate the influence of explosive density on the peak overpressures and impulses.  相似文献   

9.
With von Mises yield criterion, the loading range of Net Section Collapse (NSC) Criteria is extended from combined tension and bending loadings to combined bending, torsion and internal pressure loadings. A new theoretical analyzing method of plastic limit load for pressure pipe with incomplete welding defects based on the extended NSC Criteria is presented and the correlative formulas are deduced, the influences of pipe curvature, circumferential length and depth of incomplete welding defects on the plastic limit load of pressure pipe are considered as well in this method. Meanwhile, according to the orthogonal experimental design method, the plastic limit loads are calculated by the finite element method and compared with the theoretical values. The results show that the expressions of plastic limit load of pressure pipe with incomplete welding defects under bending, torsion and internal pressure based on extended NSC criteria are reliable. The study provides an important theoretical basis for the establishment of safety assessment measure towards pressure pipe with incomplete welding defects.  相似文献   

10.
The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA. The multi-material Eulerian and Lagrangian coupling algorithm was adopted. A flu-id-structure coupling finite element model was established which consists of Lagrange element for simulating steel frame structures and concrete ground, multiple ALE element for simulating air and TNT explosive material. Numerical simulations of the blast pressure wave propagation, struc-tural dynamic responses and deformation, and progressive collapse of a five-story steel frame structure in the event of an explosion near above ground were performed. The numerical analysis showed that the Lagrangian and Eulerian coupling algorithm gave good simulations of the shock wave propagation in the mediums and blast load effects on the structure. The columns subjected to blast load may collapse by shear yielding rather than by flexural deformation. The columns and joints of steel beam to column in the front steel frame structure generated enormous plastic defor-mation subjected to intensive blast waves, and columns lost carrying capacity, subsequently lead-ing to the collapse of the whole structure. The approach coupling influence between struc-tural deformation and fluid load well simulated the progressive collapse process of structures, and provided an effective tool for analyzing the collapse mechanism of the steel frame structure under blast load.  相似文献   

11.
Unified expression for failure of reinforced concrete members in bridge   总被引:2,自引:0,他引:2  
INTRODUCTION Reinforced concrete elements with box section are commonly used in horizontal subsystems and in vertical support of bridge structures. The horizontal structural members normally have box section and top flange. The vertical supports of the bridge usually have a box section also. To simplify the deduction of such structural member under combined forces, the box sections without top flange are discussed here. Fig.1 shows the typical section types of reinforced concrete members.…  相似文献   

12.
采用刚性地基假定是目前结构控制研究的基本条件,此假定忽略了土与结构相互作用效应的影响。但由于土与结构相互作用效应对结构振动特性有一定的影响,进而影响结构控制的效果,因此有必要研究土与结构动力相互作用的简化计算方法。基于上述原因,进行了线性体系土与结构相互作用效应对隔震体系的MB计算方法的研究。  相似文献   

13.
A type of hollow cylinder joints connected with H-shaped beams is proposed for spatial structures. Based on von Mises yield criterion and perfect elasto-plasticity model, a series of finite element models of the joints is established, in which the effect of geometric nonlinearity is taken into account. Then mechanical behavior and load-carrying capacity of the joints were investigated, which were subjected to axial load, in- and out-plane bending moments, and their combinations. The results show that the ultimate loads of the joints are determined by the maximum displacement. Furthermore, the case of one joint connected with multiple beams was discussed. Experiments on a set of typical full-scale joints were conducted to understand the structural behavior and the failure mechanism of joint, and also to validate the finite element models. Finally, the practical calculation method was established through finite elements analysis (FEA) results and numerical fitting. The results show that the joints are more ductile and materially economical than welded hollow spherical joints, and the practical calculation method can provide a reference for direct design and the revision of relevant design codes.  相似文献   

14.
FOR THE GEO一TEEHNIEAL DESI,PARAMETERS OF 5011,EOMPARISON OF SEISMIE RESPONSES BASED ON DIFFERENT THE UNEVEN DISTRIBUTION OF THE DIFFERENT KINDS OF 5011 METHODS TO EVALUATE THE 5011 FUNETIONS.IN ADDITION, AND SAMPLING LOCATIONS DURING EXPLORATION AND I…  相似文献   

15.
In the present paper, a dynamic plastic damage model for concrete has been employed to estimate responses of a reinforced concrete slab subjected to blast loading. The interaction between the blast wave and the concrete slab is considered in 3D simulation. In the first stage, the initial detonation and blast wave propagation is modelled in 2D simulation before the blast wave reaches the concrete slab, then the results obtained from 2D calculation are remapped to a 3D model. The calculated blast load is compared with that obtained from TM5-1300. Numerical results of the concrete slab response are compared with the explosive test carried out-in the Weapons System Division, Defence Science and Technology Organisation, Department of Defence, Australia.  相似文献   

16.
In the present paper, a dynamic plastic damage model for concrete has been employed to estimate responses of a reinforced concrete slab subjected to blast loading. The interaction between the blast wave and the concrete slab is considered in 3D simulation. In the first stage, the initial detonation and blast wave propagation is modelled in 2D simulation before the blast wave reaches the concrete slab, then the results obtained from 2D calculation are remapped to a 3D model. The calculated blast load is compared with that obtained from TM5-1300. Numerical results of the concrete slab response are compared with the explosive test carried out- in the Weapons System Division, Defence Science and Technology Organisation, Department of Defence, Australia.  相似文献   

17.
A double strut cable dome structural system was presented to improve the mechanical behaviour of a cable dome. This structure has good stability and is convenient to construct. To investigate its construction method and static performance, a structural model with a 6-m diameter was designed. From the nodal equilibrium equation, the calculation formulas for the prestress distribution with self-weight considered were deduced. Two types of construction methods, namely, assembling at high altitude and integral lifting, were adopted in the shape-forming process of the double strut cable dome, monitoring the internal force of the cable-strut components and the structural deformation. According to loading tests under full-span load and half-span load, the static behaviour of the structure was obtained and compared with the results from finite element analysis. Using the formulas deduced in this paper, the actual initial prestress considering self-weight for a double strut cable dome can be obtained accurately. This structure was suitable for tensioning the outer diagonal cables to apply prestress. Combined with the construction method for integral lifting, the difficulty and workload of the construction process can clearly be reduced, making the structure favourable for engineering application. Under an external load, the internal force of the ridge cables and inner diagonal cables decreases and the internal force of the other components increases. The results of the model tests were in good agreement with those of the finite element analysis.  相似文献   

18.
To study the bending strength of mass concrete under dynamic loading, the pure bending zone of three-graded concrete beam is considered as a three-phase composite composed of matrix, aggregate and interface between them on meso-level. Dynamic constitutive model considering strain-rate strengthening effect and damage softening effect is adopted to describe the cocrete and meso-element's damage. The failure mechanisms of beam under impact loading, triagle wave load, dynamic load coupling with initial static loading were simulated by using displacement-controlled FEM. Furthermore, stress-strain curve of the specimens and their dynamic bending strength were obtained. The results obtained from numerical simulation agreed well with experimental data.  相似文献   

19.
Terrorist attacks using improvised explosive devices (IED) can result in unreinforced ma-sonry (URM) wall collapse. Protecting URM wall from IED attack is very complicated. An effective solution to mitigate blast effects on URM wall is to retrofit URM walls with metallic foam sheets to absorb blast energy. However, mitigation of blast effects on metallic foam protected URM walls is currently in their infancy in the world. In this paper, numerical models are used to simulate the per-formance of aluminum foam protected URM walls subjected to blast loads. A distinctive model, in which mortar and brick units of masonry are discritized individually, is used to model the perform-ance of masonry and the contact between the masonry and steel face-sheet of aluminum foam is modelled using the interface element model. The aluminum foam is modelled by a nonlinear elas-toplastic material model. The material models for masonry, aluminum foam and interface are then coded into a finite element program LS-DYNA3D to perform the numerical calculations of response and damage of aluminum foam protected URM walls under airblast loads. Discussion is made on the effectiveness of the aluminum foam protected system for URM wall against blast loads.  相似文献   

20.
Terrorist attacks using improvised explosive devices (lED) can result in unreinforced masonry (URM) wall collapse.Protecting URM wall from lED attack is very complicated.An effective solution to mitigate blast effects on URM wall is to retrofit URM walls with metallic foam sheets to absorb blast energy.However,mitigation of blast effects on metallic foam protected URM walls is currently in their infancy in the world.In this palaer,numerical models are used to simulate the performance of aluminum foam protected URM walls subjected to blast loads.A distinctive model,in which mortar and brick units of masonry are discritized individually,is used to model the performance of masonry and the contact between the masonry and steel face-sheet of aluminum foam is modelled using the interface element model.The aluminum foam is modelled by a nonlinear elastoplastic material model.The material models for masonry,aluminum foam and interface are then coded into a finite element program LS-DYNA3D to perform the numerical calculations of response and damage of aluminum foam protected URM walls under airblast loads.Discussion is made on the effectiveness of the aluminum foam protected system for URM wall against blast loads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号