首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
求二面角的一般方法是根据定义找出二面角的平面角,然后通过论证计算求解,下面介绍一种较简捷的方法,即应用面积射影定理求解,可避免作、找、论证二面角的平面角.面积射影定理:若二面角M—a一N的大小为θ,在平面M内的一个三角形的面积为S,它在平面N上的射影面积为S′,则有:cosθ=S′/S.证:设平面M内的△ABC,且S_(△ABC)=S(1)若△ABC的边AB与交线a重合(如图1),设C在平面N上的射影为C′,则S_(△ABC′)=S′,在平面M内过C作CE(?)a于E,连C′E,则∠CEC′=θ,在Rt△CC′E中:C′E=CE·cosθ.∴cosθ=C′E/CE=(1/2C′E·AB)/(1/2CE·AB)=S′/S.(2)若△ABC的边AB∥平面N(如图2),则过AB作平面N′∥平面N,设C在平面N,N′内的射影分别为C′C″.A、B在平面N上的射影分别是A′、B′则△A′B′C′、△ABC″分别是△ABC在N、N′  相似文献   

2.
命题设一三角形面积为S,其在另一平面内射影面积为S’,若三角形所在平面与射影平面所成的锐角二面角为θ,那么cosθ=S'/S.  相似文献   

3.
如图1,直线AB和平面α所成的角是θ1,直线AC在平面α内,AC和AB的射影AB’所成的角为θ2,设∠BAC=θ,则cosθ1cosθ2=cosθ.此公式在新教材中列为了必学的内容,大大提高了其地位.下面举例谈谈它的应用.一、用于求直线与平面所成的角  相似文献   

4.
若平面的一条斜线与这个平面所成的角为α,平面内的一条直线与这条斜线及其射影所成的锐角(或直角)分别为θ及β.则有cosθ=cosα·cosβ。  相似文献   

5.
立体几何中有一道习题 ,若用该题的结论来解课本中的其他习题 ,比常规解法显得简便得多 .先看该题 :题目 AB和平面α所成的角是θ1 ,AC在平面α内 ,AC和AB的射影AB′成角是θ2 ,设∠BAC =θ ,求证 :cosθ1 ·cosθ2 =cosθ .证明 如图 1 ,过AB上一点D向平面α作垂线DE ,垂足为E ,显然点E在直线AB′上 ,过E向AC作垂线EF ,垂足为F ,连结D、F ,根据三垂线定理 ,AC ⊥DF .在Rt△ADE中 ,cosθ1 =AEAD,在Rt△AEF中 ,cosθ2 =AFAE,在Rt△ADF中 ,cosθ =AFAD,∴cosθ1 ·cosθ2 =AEAD·AFAE =AFAD =cosθ.结论得证 .…  相似文献   

6.
在立体几何中,将某直线或某平面图形垂直投影到某个平面内,或者将某向量投影到一个单位方向向量上,常常可以巧妙地求解二面角、距离、体积等问题.一、面积射影法若二面角的一个半平面内有一个面积为S的多边形,此多边形在另一个半平面内的射影构成的多边形的面积为S',则利用公式cosθ=S'S可求出二面角θ的大小.例1如图1所示,一条长为2的线段AB夹在互相垂直的两平面α、β之间,AB与α成45°角,与β成30°角,过A、B两点分别作两个平面的交线的垂线AC、BD.求平面ABD与平面ABC所成的二面角.分析常规解法是先作出所求二面角的平面角,然后…  相似文献   

7.
若直线AB是平面α的一条斜线,A’B’是AB在平面α内的射影,l为平面α内不同于A’B’的一条直线,且AB与l的夹角为θ,A’B’与l的夹角为θ1,AB与平面α所成的角为θ2,则易知cosθ=cosθ1·cosθ2,为了便于学生记忆和灵活使用,笔者不妨将此公式称为三线三角余弦公式,  相似文献   

8.
一、面积射影法。若二面角的一个半平面内有一个面积为S的多边形,这个多边形在另一个半平面内的射影构成的多边形面积为S′,则利用公式cosθ=S′/S可求出二面角θ的大小.  相似文献   

9.
立体几何教材中有这样一道习题:如图1,AB和平面α所成的角为θ1,AC在平面α内,AC和AB的射影AB′所成的角为θ2,设∠BAC=θ,则有cosθ1 cosθ2=cosθ.将其引申,得如下结论:命题AB和平面所成的角是θ1,AC在平面α内,AC和AB的射影AB′所成的角为θ2,设二面角B-AC-B′为ψ,  相似文献   

10.
一、重心有关的定义、定理:(Ⅰ)在三棱锥中,若各个侧面在底面上的射影面积相等,则顶点在底面上的射影为底面三角形的重心.(Ⅱ)设G是△ABC的重心,AG的延长线交BC于D,则有(1)BD=DC;(2)AG∶AD=2∶3;(3)S△GAB=S△GBC=S△GAC=13S△ABC;(4)AD2=14(2AB2+2AC2-BC2).例1三棱锥V-ABC三侧面与底面所成的二面角分别为30°,45°,60°,底面积为3,顶点在底面上的射影是底面的重心,求三棱锥的侧面积.解设顶点在底面的射影为G,依题意知,G是△ABC的重心.由平面几何知识得S△GAB=S△GBC=S△GAC=13S△ABC=1.由面积射影定理知S△VAC…  相似文献   

11.
人教版高中数学第二册(下B)第43页在讲解直线和平面所成角时有如下结论:如图l所示,OA 和平面α所成的角是θ1,AC在平面α内,AC与OA 在平面α上的射影AB所成的角为θ2,设∠OAC= θ,则有cosθ=cosθ1·cosθ2(证明可参照课本).  相似文献   

12.
如图1,已知AO是平面α的一条斜线, A是斜足,OB垂直于α,B是垂足,则直线AB是斜线AO图1在平面α内的射影.设AC是α内的任一直线.设AO与AB所成的角为θ1,AB与AC所成的角为θ2,AO与AC所成的角为θ.则cosθ=cosθ1cosθ2.由此我们得到最小角定理:平面的斜线和它在平面内的射影所成的角,是这条斜线和这个平面内任一条直线所成的角中的最小的角.  相似文献   

13.
笔者就今年高考卷Ⅲ数学卷中学生普遍感到得分难的一道题目进行了探索,得出两种巧妙的解法,供大家参考。如图1,在四棱锥V-ABCD中,底面ABCD是正方形,侧面△VAD是正三角形,侧面VAD⊥底面ABCD,(Ⅰ)证明AB⊥平面VAD;(Ⅱ)求面VAD与面VDB所成的二面角的大小.解:(Ⅰ)证明(同标准答案).(Ⅱ)方法一:由(Ⅰ)知:△VDB在侧面VAD上的射影是△VAD.不妨设AB=1,则S△VAD=3~(1/3)/4.又∵cos∠VDB=cos∠VDA·cos∠ADB=1/2·2~(1/2)/2=2~(1/2)/4,∴sin∠VDB14~(1/14)/4  相似文献   

14.
如图,AB和平面α所成的角是θ,,AC在平面α内,AC和AB的射影AB′,成角θ2.设∠BAC=θ,求证:cosθ1cosθ2=cosθ.  相似文献   

15.
统编高中数学第二册P_(100)第九题,如图,AB和平面a所成的角是θ_1,AC在平面a内,AC和AB的射影AB成角θ_2,设∠BAC=θ,则 cosθ=cosθ_1·cosθ_2(*) 其证明不难,但运用有一定的广泛性。兹举凡例说明之。例1:已知一个直角三角形的两直角边长为a、b,把它沿斜边上的高折成直二面角,求两边夹角的余弦  相似文献   

16.
挖掘教材中某些例题和习题的命题背景或应用价值,是教学中重要的一环,它不但有助于学生开阔视野、灵活运用基础知识、丰富解题思路,而且将促进学生主动钻研教材寻找工具的能力。如统编教材数学高中第二册复习题五第九题为:(如图1)“AB和平面M所成的角是α,AC在平面M内,AC和AB在平面M内的射影AB′成角β,设∠BAC=θ,求证:cosθ=cosα·cosβ”。在学生完成了该命题的证明以后,我们考虑到关系式cosθ=cosα·cosβ所要求的条件在立几图形中存在较普遍,直接利用  相似文献   

17.
在教材中 ,不乏典型的基本图形 ,教学中如能加以研究 ,当能使知识的掌握更为牢固 ,方法的应用更加灵活 ,既能培养学生的探究创新能力 ,又能使学生享受到成功的喜悦 .下面举一例 ,加以说明 .1 基本图形的来源      图 1在新教材第 4 4页中 ,有如下内容 :如图 1,已知AO是平面α的斜线 ,A是斜足 ,OB垂直于α ,B为垂足 ,则直线AB是斜线AO在平面α内的射影 .设AC是α内的任一条直线 ,AC ⊥OC ,垂足为C ,又设AO与AB所成的角为θ1,AB与AC所成的角为θ2 ,AO与AC所成的角为θ ,经过推导得到 cosθ=cosθ1·cosθ2 .图 1中 ,三棱…  相似文献   

18.
凌艺国 《数学教学》2008,(3):25-25,10
在人教版《数学》第二册(下)直线与平面所成的角一节中有一个公式:cosθ=cosθ1cosθ2.如图1,AO是平面α的斜线,A是斜足,OB垂直于α,B为垂足,则直线AB是斜线在平面α内的射影.  相似文献   

19.
众所周知,在三角形中有正弦定理、余弦定理、射影定理,它们揭示了三角形中边角间的重要关系.这三个定理联系紧密,并可互相推出.在四面体中,也有类似的三个定理,它们表示了面角与二面角之间的关系,当然也可彼此互推. 在四面体O-ABC中,设三个面角分别为α、β、γ,对应的二面角分别为θ-α、θ-β、θ-γ,(如图1)则有 定理1 cosα=cosβ·cosγ sinβ·sinγ·cosθ_α cosβ=cosα·cosγ sinα·sinγ·cosθ_β cosγ=cosα·cosβ sinα·sinβ·cosθ_γ 证明 利用有关射影的定理:(1)平面上折线的各边射影之和等于封闭线段在射影轴上的射影.(2)直线在轴上的垂直投影等于被投线段的长度乘以该线段和轴的交角的余弦.  相似文献   

20.
在几何体的求积问题中,如果能恰当地做些分割、补形及等积变换,往往能化难为易,简化运算.下面来看两例. 例1 已知正三棱台上、下底面的面积分别为S1和S(S1相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号