首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A continuous multivariable uniform finite-time output feedback reentry attitude control scheme is developed for Reusable Launch Vehicle (RLV) with both matched and mismatched disturbances. A novel finite-time controller is derived using the bi-limit homogeneous technique, which ensures that the attitude tracking can be achieved in a uniformly bounded convergence time from any initial states. A multivariable uniform finite-time observer is designed based on an arbitrary order robust sliding mode differentiator to estimate the unknown states and the external disturbances, simultaneously. Then, an output feedback control scheme is established through the combination of the developed controller and the observer. A rigorous proof of the uniform finite-time stability of the closed-loop system is presented using Lyapunov and homogeneous techniques. Finally, numerical simulation is provided to demonstrate the efficiency of the proposed scheme.  相似文献   

2.
The tracking control based on output feedback for a category of flexible-joint robot (FJR) systems is investigated in this brief. Control performance of the systems is inevitably bearing the brunt of various unknown time-varying disturbances, which can be categorized to be matched and mismatched and generally cover internal parameter uncertainties, couplings, unmodelled dynamics, and external load or changing operating environments. To cope with these disturbances, the mismatched disturbances are first transferred to the matched ones by a flatness method, which eliminates the computational cost of estimating mismatched disturbances. Then, a generalized proportional integral observer (GPIO) is constructed to estimate the unavailable states and disturbances. By integrating the estimated disturbance and states provided by the GPIO, a novel dynamic sliding surface is constructed. Finally, a continuous sliding mode control (CSMC)-based output feedback control framework is further designed. The presented control strategy only requires link position information and is continuous, which can effectively reduce the chattering driven by the high-frequency switching item in the traditional SMC method. Asymptotic convergence of output tracking error is guaranteed by theoretical analysis under some mild conditions. Comparative tests on a two-link FJR verify the claimed control performance.  相似文献   

3.
Many dynamical systems are continuous-time non-square with unknown mismatched input and output disturbances. For such systems, a universal on-line robust optimal tracking control is often desirable. In this paper, the conventional proportional-integral-differential (PID) controller is utilized as a fictitious PID filter to shape the tracking error in the frequency-domain using a quadratic performance index as a weighting function, such that the robust PID-shaped PI tracker integrated with the equivalent input disturbance (EID) estimator is established to carry out the on-line robust optimal tracking control of the general disturbed system. The benefits and discrepancies of the proposed compensation improvement mechanism over the conventional optimal trackers for continuous-time non-square systems with/without unknown mismatched input and output disturbances are listed as follows: (i) It develops a new net EID estimator without any previously established constraints on the dimensions of the system and on the disturbances; (ii) It provides an efficient estimated-state-feedback-based EID estimator in contrast to the conventional output-feedback-based EID estimators; (iii) It is able to carry out on-line EID estimation of the tracking errors for systems with endogenous/exogenous output disturbances; (iv) It is a universal tracker which can be simply implemented as a plug-in EID estimator for most servo systems, to improve the performance of any existing observers/trackers which are not allowed to be removed from the system. The advantages of the proposed method over two existing outstanding approaches reported in the literature are pointed out using illustrative examples.  相似文献   

4.
The decentralized tracking control methods for large-scale nonlinear systems are investigated in this paper. A backstepping-based robust decentralized adaptive neural H tracking control method is addressed for a class of large-scale strict feedback nonlinear systems with uncertain disturbances. Under the condition that the nonlinear interconnection functions in subsystems are unknown and mismatched, the decentralized adaptive neural network H tracking controllers are designed based on backstepping technology. Neural networks are used to approximate the packaged multinomial including the unknown interconnections and nonlinear functions in the subsystems as well as the derivatives of the virtual controls. The effect of external disturbances and approximation errors is attenuated by H tracking performance. Whether the external disturbances occur or not, the output tracking errors of the close-loop system are guaranteed to be bounded. A practical example is provided to show the effectiveness of the proposed control approach.  相似文献   

5.
In this paper, we investigate the problem of output feedback tracking for a class of Euler–Lagrange multi-agent systems with unmeasurable velocity and input disturbances. By proposing a novel dynamic velocity observer, an adaptive output feedback consensus algorithm is proposed such that the tracking errors of all agents can converge to an arbitrarily small neighborhood of zero by tuning the design parameters. A numerical example is presented to illustrate the effectiveness of the controller.  相似文献   

6.
This paper presents an extended state observer-based output feedback adaptive controller with a continuous LuGre friction compensation for a hydraulic servo control system. A continuous approximation of the LuGre friction model is employed, which preserves the main physical characteristics of the original model without increasing the complexity of the system stability analysis. By this way, continuous friction compensation is used to eliminate the majority of nonlinear dynamics in hydraulic servo system. Besides, with the development of a new parameter adaption law, the problems of parametric uncertainties are overcome so that more accurate friction compensation is realized. For another, the developed adaption law is driven by tracking errors and observation errors simultaneously. Thus, the burden of extended state observer to solve the remaining uncertainties is alleviated greatly and high gain feedback is avoided, which means better tracking performance and robustness are achieved. The designed controller handles not only matched uncertainties but also unmatched dynamics with requiring little system information, more importantly, it is based on output feedback method, in other words, the synthesized controller only relies on input signal and position output signal of the system, which greatly reduces the effects caused by signal pollution, measurement noise and other unexpected dynamics. Lyapunov-based analysis has proved this strategy presents a prescribed tracking transient performance and final tracking accuracy while obtaining asymptotic tracking performance in the presence of parametric uncertainties only. Finally, comparative experiments are conducted on a hydraulic servo platform to verify the high tracking performance of the proposed control strategy.  相似文献   

7.
A novel offset-free trajectory tracking control strategy is proposed for a hypersonic vehicle under external disturbances and parameter uncertainties. In order to realize the real-time control for the hypersonic vehicle, the predictive control law is divided into the on-line design and off-line design. Unlike general nonlinear disturbance observer-based control which involves designing the disturbance compensation strategy, the influences of the disturbances on the velocity and altitude are attenuated by the direct feedback compensation (DFC). Particularly, the offset-free tracking feature is proved for the output reference signal. Simulations show that the real-time control can be realized for the hypersonic vehicle, the controls and angle of attack are all in their given constraint scopes, and the velocity and altitude can track the given references accurately even under mismatched disturbances.  相似文献   

8.
In this paper, a novel robust control strategy based on disturbance-compensation-gain (DCG) construction approach is proposed for small-scale unmanned helicopters in the presence of high-order mismatched disturbances. The overall control structure consists of two hierarchical layers. The inner-loop controller is to guarantee the stability of the unmanned helicopters subject to high-order mismatched disturbances. With the estimation of the disturbances and their successive derivatives via finite-time disturbance observer (FTDO), by properly designing some disturbance compensation gains, a novel robust controller is developed to remove the high-order mismatched disturbances from the output channels. The outer-loop controller is to produce flight commands for inner-loop system, as well as to track the reference trajectory, which is carried out with the dynamic inversion technique. The simulation results demonstrate that the unmanned helicopters are capable to perform flight missions autonomously with the proposed control strategy.  相似文献   

9.
In this paper, global practical tracking is investigated via output feedback for a class of uncertain nonlinear systems subject to unknown dead-zone input. The nonlinear systems under consideration allow more general growth restriction, where the growth rate includes unknown constant and output polynomial function. Without the precise priori knowledge of dead-zone characteristic, an input-driven observer is designed by introducing a novel dynamic gain. Based on non-separation principle, a universal adaptive output feedback controller is proposed by combining dynamic high-gain scaling approach with backstepping method. The controller proposed guarantees that the closed-loop output can track any smooth and bounded reference signal by any small pre-given tracking error, while all closed-loop signals are globally bounded. Finally, simulation examples are given to illustrate the effectiveness of our dynamic output feedback control scheme.  相似文献   

10.
For a class of flexible joint manipulators actuated by DC-motors, the problem of modeling and trajectory tracking control under random disturbances is considered in this paper. How to describe random disturbances and introduce them to the system is the key for modeling and control. According to the relative motion and the equivalent circuit, the effect of random disturbances can be regarded as torque or voltage disturbed by colored noises. Thus, a random model is constructed. By using the vectorial backstepping and the technique of separating out the noise from coupled terms, a state feedback tracking controller is designed such that the state of closed-loop system has an asymptotic gain in the 2nd moment and the mean square of tracking error converges to an arbitrarily small neighborhood of zero by tuning design parameters. The effectiveness of the proposed scheme is demonstrated by the simulation results for a two-link robot.  相似文献   

11.
This paper investigates the robust output regulation problem for stochastic systems with additive noises. As is known, for the output regulation control problem, a general method is to regard that the system is disturbed by an autonomous exosystem (which is consisted by external disturbances and reference signals), and for the system disturbed by the white noise, the stochastic differential equations (SDEs) should be utilized in modeling, accordingly, a controller with a feedforward regulator is constructed for the stochastic system with an exosystem, which can not only cancel the external disturbance, but also transform the trajectory tracking problem into the stabilization problem; In consideration of the state variables in stochastic systems cannot be measured completely, we embed an observer to the controller, such that the random interference can be suppressed, and the trajectory tracking can be achieved. Based on the stochastic control theory, the criteria of the exponential practical stability in the mean square is presented for the closed-loop system, finally, through tuning the controller parameters, the mean square of the tracking error can converge to an arbitrarily small neighborhood of the origin.  相似文献   

12.
This paper is concerned with the event-triggered dynamic output feedback tracking control for large-scale interconnected systems with disturbances. For each node, a novel event-triggered mechanism is driven by local relative output tracking error to determine whether the signal will be transmitted. A two-step optimization is applied for dynamic output feedback controller design which guarantees robust stability of the system with an optimal H disturbance attenuation level. Finally, a simulation example of master-slave multiple vehicles is given to illustrate the effectiveness of the proposed scheme.  相似文献   

13.
In this paper, a novel error-driven nonlinear feedback technique is designed for partially constrained errors fuzzy adaptive observer-based dynamic surface control of a class of multiple-input-multiple-output nonlinear systems in the presence of uncertainties and interconnections. There is no requirements that the states are available for the controller design by constructing fuzzy adaptive observer, which can online identify the unmeasurable states using available output information only. By transforming partial tracking errors into new error variables, partially constrained tracking errors can be guaranteed to be confined in pre-specified performance regions. The feature of the error-driven nonlinear feedback technique is that the feedback gain self-adjusts with varying tracking errors, which prevents high-gain chattering with large errors and guarantees disturbance attenuation with small errors. Based on a new non-quadratic Lyapunov function, it is proved that the signals in the resulted closed-loop system are kept bounded. Simulation and comparative results are given to demonstrate the effectiveness of the proposed method.  相似文献   

14.
This paper is concerned with the high performance adaptive robust control problem for an aircraft load emulator (LE). High dynamic capability is a key performance index of load emulator. However, physical load emulators exist a lot of nonlinearities and modeling uncertainties, which are the main obstacles for achieving high performance of load emulator. To handle the modeling uncertainty and achieve adjustable model-based compensation, firstly, the mathematical model of the load emulator is built, and then a nonlinear adaptive robust controller only with output feedback signal is proposed to improve the tracking accuracy and dynamic response capability. The controller is constructed based on the adaptive robust control framework with necessary design modifications required to accommodate uncertainties and nonlinearities of hydraulic load emulator. In this approach, nonlinearities are canceled by output feedback signal; and modeling errors, including parametric uncertainties and uncertain nonlinearities, are dealt with adaptive control and robust control respectively. The resulting controller guarantees a prescribed disturbance attenuation capability in general while achieving asymptotic output tracking in the absence of time-varying uncertainties. Experimental results are obtained to verify the high performance nature of the proposed control strategy, especially the high dynamic capability.  相似文献   

15.
A novel control scheme combining disturbance observer technique and back-stepping method is proposed for a class of nonlinear system with multiple mismatched disturbances. The uncertain multiple mismatched disturbances contain not only single harmonic or constant disturbances but also another unexpected nonlinear signal presented as a nonlinear function. The composite adaptive disturbance observers are designed to estimate the disturbances with partial known information. By integrating disturbance observer based control with back-stepping method, a composite controller is designed. Here, the disturbance estimations are introduced into the design of virtual control laws in each step to compensate the mismatched disturbances. Rigorous stability analysis for the closed-loop system is established by direct Lyapunov function method. It is shown that the system output asymptotically converges to zero in spite of existing multiple mismatched disturbances. Finally, a simulation example is applied to demonstrate the effectiveness of the proposed method.  相似文献   

16.
In this paper, we consider output tracking for a class of MIMO nonlinear systems which are composed of coupled subsystems with vast mismatched uncertainties. First, all uncertainties influencing the performance of controlled outputs, which include internal unmodelled dynamics, external disturbances, and uncertain nonlinear interactions between subsystems, are refined into the total disturbance in the control channels of subsystems. The total disturbance is shown to be sufficiently reflected in the measured output of each subsystem so that it can be estimated in real time by an extended state observer (ESO) in terms of the measured outputs. Second, we decouple approximately the MIMO systems by cancelling the total disturbance based on ESO estimation so that each subsystem becomes approximately independent linear time invariant one without uncertainty and interaction with other subsystems. Finally, we design an ESO based output feedback for each subsystem separately to ensure that the closed-loop state is bounded, and the closed-loop output of each subsystem tracks practically a given reference signal. This is completely in comply with the spirit of active disturbance rejection control (ADRC). Some numerical simulations are presented to demonstrate the effectiveness of the proposed output feedback control scheme.  相似文献   

17.
This paper presents an additive-state-decomposition-based model predictive tracking control and disturbance rejection method for a permanent magnet synchronous motor (PMSM) servo system subject to unknown parameter perturbations, unmodeled dynamics, and time-varying load torque. The basic idea of this method is to equivalently decompose the original system into a primary system for handling the tracking control subproblem and a secondary system for dealing with the robust stabilization subproblem. A model predictive controller is designed for the primary system to achieve high-accuracy tracking of the reference speed. As for the secondary system, a novel high-order generalized extended state observer (HGESO) is constructed to estimate the multiple disturbances simultaneously, and a state feedback control law incorporating a disturbance compensator is developed to eliminate the adverse effect of the multiple disturbances on the system output. By combining the control inputs of the two subsystems together, the control objectives of the original system can be achieved. Both the stability criterion and design procedure of the closed-loop control system are developed. Finally, hardware-in-the-loop-based comparative experiments are conducted to demonstrate that the proposed method effectively suppresses the influence of the multiple disturbances on motor speed tracking accuracy and that the control system has both satisfactory dynamic performance and robustness.  相似文献   

18.
This paper investigates the robust attitude tracking control problem for a rigid-flexible coupling spacecraft. First, the dynamic model for a rigid-flexible coupling spacecraft is established based on the first-order approximation method to fully reveal the coupling effect between rigid movement and flexible displacement when the spacecraft is in rapid maneuver. In the condition that flexible vibration measurements are not available, an robust output feedback controller which is independent of model is presented using Lyapunov method with considering state-independent disturbances. To resolve the chattering problem caused by the discontinuous sign function, a modified continuous output feedback controller is proposed by introducing functions with continuous property. Rigorous proof is achieved showing that the proposed control law ensures asymptotic stability and guarantees the attitude of a rigid-flexible spacecraft to track a time-varying reference attitude based on angle and angular velocity measurements only. Finally, simulations are carried out to verify the simplicity and effectiveness of the proposed control scheme.  相似文献   

19.
The current paper addresses the fuzzy adaptive tracking control via output feedback for single-input single-output (SISO) nonlinear systems in strict-feedback form. Under the situation of system states being unavailable, the system output is used to set up the state observer to estimate the real system states. Furthermore, the estimation states are employed to design controller. During the control design process, fuzzy logic systems (FLSs) are used to model the unknown nonlinearities. A novel observer-based finite-time tracking control scheme is proposed via fuzzy adaptive backstepping and barrier Lyapunov function approach. The suggested fuzzy adaptive output feedback controller can force the output tracking error to meet the pre-specified accuracy in a fixed time. Meanwhile, all the closed-loop variables are bounded. Compared to some existing finite-time output feedback control schemes, the developed control strategy guarantees that the settling time and the error accuracy are independent of the uncertainties and can be specified by the designer. At last, the effectiveness and feasibility of the proposed control scheme are demonstrated by two simulation examples.  相似文献   

20.
A discrete-time output feedback quasi-sliding mode control scheme is proposed to realize the problem of robust tracking and model following for a class of uncertain linear systems in which states are unavailable and estimated states are not required. The proposed scheme guarantees the stability of the closed-loop system and achieves a very small ultimate boundedness of the tracking error in the presence of matched uncertain parameters and external slow disturbances. This scheme ensures the robustness to matched parametric uncertainties and disturbances. Since the proposed controller is designed without any switching element, the chattering phenomenon is eliminated. Furthermore, the knowledge of upper bound of uncertainties is not required. Simulation results demonstrate the effectiveness of the proposed scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号