首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper studies the robust stochastic stabilization problem for a class of fuzzy Markovian jump systems with time-varying delay and external disturbances via sliding mode control scheme. Based on the equivalent-input-disturbance (EID) approach, an online disturbance estimator is implemented to reject the unknown disturbance effect on the considered system. Specifically, to obtain exact EID estimation Luenberger fuzzy state observer and a low-pass filter incorporated to the closed-loop system. Moreover, novel fuzzy EID-based sliding mode control law is constructed to ensure the stability of the closed-loop system with satisfactory disturbance rejection performance. By employing Lyapunov stability theory and some integral inequalities, a new set of delay-dependent robust stability conditions is derived in terms of linear matrix inequalities (LMIs). The resulting LMI is used to find the gains of the state-feedback controller and the state observer a for the resulting closed-loop system. At last, numerical simulations based on the single-link arm robot model are provided to illustrate the proposed design technique.  相似文献   

2.
The H filtering problem for distributed parameter systems with stochastic switching topology is investigated in this paper based on event-triggered control scheme. The switching topology which subjects to a Markovian chain is considered in filter design because of the communication uncertainty of practical networks. An event-triggered mechanism as a sampling scheme is developed aiming at the benefit of reducing the computation load or saving the limited network resources. Based on some novel integral inequalities, the improved delayed method is proposed for the H filtering control problem with event-triggered scheme. Moreover, by employing stochastic stability theory, filters with Markovian jump parameters are designed to guarantee that the stochastically mean square stability and H performance of the underlying error system. Finally, in order to illustrate the applicability of the obtained results, numerical examples are presented.  相似文献   

3.
This article is dedicated to the issue of asynchronous adaptive observer-based sliding mode control for a class of nonlinear stochastic switching systems with Markovian switching. The system under examination is subject to matched uncertainties, external disturbances, and quantized outputs and is described by a TS fuzzy stochastic switching model with a Markovian process. A quantized sliding mode observer is designed, as are two modes-dependent fuzzy switching surfaces for the error and estimated systems, based on a mode dependent logarithmic quantizer. The Lyapunov approach is employed to establish sufficient conditions for sliding mode dynamics to be robust mean square stable with extended dissipativity. Moreover, with the decoupling matrix procedure, a new linear matrix inequality-based criterion is investigated to synthesize the controller and observer gains. The adaptive control technique is used to synthesize asynchronous sliding mode controllers for error and SMO systems, respectively, so as to ensure that the pre-designed sliding surfaces can be reached, and the closed-loop system can perform robustly despite uncertainties and signal quantization error.Finally, simulation results on a one-link arm robot system are provided to show potential applications as well as validate the effectiveness of the proposed scheme.  相似文献   

4.
In this paper, a command filter based dynamic surface control (DSC) is developed for stochastic nonlinear systems with input delay, stochastic unmodeled dynamics and full state constraints. An error compensation system is designed to constrain the filtering error caused by the first-order filter in the traditional dynamic surface design. On this basis, the stability proof of DSC for stochastic nonlinear systems based on command filter is proposed. The definition of state constraints in probability is presented, and the problem of stochastic full state constraints is solved by constructing a group of coordinate transformations with nonlinear mappings. The Pade approximation is adopted to deal with input delay. The stochastic unmodeled dynamics is considered, which is processed by utilizing the property of stochastic input-to-state stability (SISS) and changing supply function. All the signals of the system are proved to be semi-globally uniformly ultimately bounded (SGUUB) in probability, and the full state constraints are not violated. The two simulation examples also verify the effectiveness of the proposed adaptive DSC scheme.  相似文献   

5.
This paper focuses on the extended dissipative filter design problem for a class of uncertain semi-Markov jump systems in the discrete-time context, where the parameter uncertainties are assumed to be occurred in a special probabilities way. The aim of this paper is to design a mode-dependent filter ensuring the stochastic stability of the resulting filtering error system. To reduce the burden of communication network, the event-triggered scheme and quantized measurement are employed. By constructing a new Lyapunov functional, the filter design methodology is put forward. Finally, two numerical examples are proposed to demonstrate the usefulness of the filter design methodology.  相似文献   

6.
This paper studies the problem of composite control for a class of uncertain Markovian jump systems (MJSs) with partial known transition rates, multiple disturbances and actuator saturation. Compared with the existing results, a novel robust composite control scheme is put forward by virtue of adaptive neural network technique. For MJSs, the partial unknown information on transition rates and the actuator saturation influence the design of disturbance observer and the robust H controller. Firstly, without taking account of external disturbances, the network reconstruction error and saturation, a novel robust adaptive control strategy is established to ensure that all the signals of the closed-loop system are asymptotically bounded in mean square. Secondly, the solvability condition for ensuring the robust H performance is given by using a modified adaptive law, where the saturation is treated as a disturbance-like signal. Finally, the simulations for a numerical example and an application example are performed to validate the effectiveness of the proposed results.  相似文献   

7.
This paper is concerned with event-triggered adaptive fuzzy tracking control for high-order stochastic nonlinear systems. The approach of fuzzy logic systems (FLSs) approximation is extended to high-order stochastic nonlinear systems to deal with the unknown nonlinear uncertainties. A novel high-order adaptive fuzzy tracking controller is firstly presented via a backstepping approach and event-triggering mechanism which can mitigate the unnecessary waste of computation and communication resources. Based on the above techniques, frequently-used growth assumptions imposed on unknown system nonlinearities are removed and the influence for the high order is handled. The proposed high-order adaptive fuzzy tracking control method not only deals with the influence of high order, but also ensures that the tracking error converges to a small neighborhood of the origin in probability. Finally, the effectiveness of the proposed control method is illustrated by a numerical example.  相似文献   

8.
This paper is concerned with asynchronous stabilization for a class of discrete-time Markovian jump systems. The mode of designed controller is considered to be not perfectly synchronous with the activated mode of the Markovian jump system. In order to achieve the asymptotic stability with asynchronous controller, a conditional probability is introduced to describe the asynchronism of system and controller modes, which is dependent on the active system mode. Besides, due to the difficulty in acquiring all the mode transition probabilities in practice, the transition probabilities of the Markovian jump system and the controllers are supposed to be partially unknown. A necessary and sufficient condition is developed to guarantee the stochastic stability of the resultant closed-loop system and further extended to asynchronous stabilization with partially known transition probabilities. Finally, the effectiveness and advantages of the proposed methods are demonstrated by two illustrative examples.  相似文献   

9.
This paper is concerned with the robust sliding mode control (SMC) problem for a class of uncertain discrete-time Markovian jump systems with mixed delays. The mixed delays consist of both the discrete time-varying delays and the infinite distributed delays. The purpose of the addressed problem is to design a sliding mode controller such that, in the simultaneous presence of parameter uncertainties, Markovian jumping parameters and mixed time-delays, the state trajectories are driven onto the pre-defined sliding surface and the resulting sliding mode dynamics is stochastically stable in the mean-square sense. A discrete-time sliding surface is firstly constructed and an SMC law is synthesized to ensure the reaching condition. Moreover, by constructing a new Lyapunov–Krasovskii functional and employing the delay-fractioning approach, a sufficient condition is established to guarantee the stochastic stability of the sliding mode dynamics. Such a condition is characterized in terms of a set of matrix inequalities that can be easily solved by using the semi-definite programming method. A simulation example is given to illustrate the effectiveness and feasibility of the proposed design scheme.  相似文献   

10.
This paper aims to develop a robust optimal control method for longitudinal dynamics of missile systems with full-state constraints suffering from mismatched disturbances by using adaptive dynamic programming (ADP) technique. First, the constrained states are mapped by smooth functions, thus, the considered systems become nonlinear systems without state constraints subject to unknown approximation error. In order to estimate the unknown disturbances, a nonlinear disturbance observer (NDO) is designed. Based on the output of disturbance observer, an integral sliding mode controller (ISMC) is derived to counteract the effects of disturbances and unknown approximation error, thus ensuring the stability of nonlinear systems. Subsequently, the ADP technique is utilized to learn an adaptive optimal controller for the nominal systems, in which a critic network is constructed with a novel weight update law. By utilizing the Lyapunov's method, the stability of the closed-loop system and the convergence of the estimation weight for critic network are guaranteed. Finally, the feasibility and effectiveness of the proposed controller are demonstrated by using longitudinal dynamics of a missile.  相似文献   

11.
In this paper, we study the cooperation problem over a group of discrete-time nonlinear dynamically decoupled multi-agent systems (MAS). A distributed model predictive control (DMPC) scheme is proposed in the event-triggered context. Agents cooperate through a coupled cost function subject to input constraints. From the practical perspective, the additive disturbances are taken into account in the controller design. Using the contraction theory in the framework of Riemannian manifolds, a novel constraint is constructed in the DMPC optimization problem to provide the capability of disturbance rejection. Moreover, the event-triggered mechanism is introduced for saving computational and communicational resources. The event-triggering condition is developed by checking the Riemannian distance between the actual and optimal state trajectories. The stability of the closed-loop system and recursive feasibility of the DMPC scheme, thereafter, are rigorously analyzed. In particular, the stability analysis is built upon the contraction theory, which distinguishes this work from the existing results using the conventional Lyapunov theory. It is shown that the recursive feasibility is guaranteed if the additive disturbances are bounded and the event-triggering condition is properly designed. The numerical simulation results demonstrate the effectiveness of the proposed algorithm.  相似文献   

12.
In this paper, the consensus control problem of Takagi-Sugeno (T-S) fuzzy multiagent systems (MASs) is investigated by using an observer based distributed adaptive sliding mode control. A distributed nonfragile observer is put forward to estimate the unmeasured state of agents. Based on such an observer, a novel distributed integral sliding surface is designed to suppress the disturbance and uncertainty of T-S fuzzy MASs. In order to achieve the consensus objective, a nominal distributed protocol and an adaptive sliding mode controller are separately designed. Futhermore, the nominal distributed protocol solves the consensus control problem of T-S fuzzy MASs in the absence of disturbance and uncertainty by using the information of adjacent agents obtained by the observer, while the adaptive sliding mode controller suppresses the disturbance and uncertainty. Finally, the proposed method is applied to two examples. Example 1 verifies the superiority of the method by comparing with the fuzzy-based dynamic sliding mode controller. Example 2 is used to illustrate that our control scheme can effectively solve the consensus control problem of T-S fuzzy MASs.  相似文献   

13.
《Journal of The Franklin Institute》2019,356(17):10335-10354
This paper is devoted to investigate the designs of the event-based distributed state estimation and fault detection of the nonlinear stochastic systems over wireless sensor networks (WSNs). The nonlinear stochastic systems as well as the filters corresponding to the multiple sensors are represented by interval type-2 Takagi–Sugeno (T–S) fuzzy models. (1) A new type of fuzzy distributed filters based on event-triggered mechanism is established corresponding to the nodes of the WSN. (2) The overall stability and performance, that is mean-square asymptotic stability in H sense, of the event-driven fault detection system is analyzed based on Lyapunov stability theory. (3) New techniques are developed to cope with the problem of parametric matrix decoupling for solving the distributed filter gains. (4) Finally, the desired event-based distributed filter matrices are designed subject to the numbers of the fuzzy rules and a series of matrix inequalities. A simulation case is detailed to show the effectiveness of the presented event-based distributed fault detection filtering scheme.  相似文献   

14.
This paper investigates the non-fragile control for positive Markovian jump systems both in continuous-time and discrete-time cases with actuator uncertainty. It is assumed that the coefficient matrices of the non-fragile controller is unknown and bounded. The state-feedback controller gain consists of nominal controller gain and gain perturbation. First, a set of state-feedback controllers for the considered system are designed by using a stochastic co-positive Lyapunov function integrated with linear programming approach. Under the designed controllers, the resulting closed-loop systems are positive and stochastically stable. Then, the proposed controller design approach is extended to discrete-time systems. Through comparisons, it is shown that existing results are special cases of the presented ones in the paper. Finally, two examples are given to illustrate the effectiveness of the proposed design.  相似文献   

15.
This paper investigates the adaptive fault-tolerant control problem for a class of continuous-time Markovian jump systems with digital communication constraints, parameter uncertainty, disturbance and actuator faults. In this study, the exact information for actuator fault, disturbance and the unparametrisable time-varying stuck fault are totally unknown. The dynamical uniform quantizer is utilized to perform the design work and the mismatched initializations at the coder and decoder sides are also considered. In this paper, a novel quantized adaptive fault-tolerant control design method is proposed to eliminate the effects of actuator fault, parameter uncertainty and disturbance. Moreover, it can be proved that the solutions of the overall closed-loop system are uniformly bounded, which is asymptotically stable almost surely. Finally, numerical examples are provided to verify the effectiveness of the new methodology.  相似文献   

16.
针对几类重要的随机非线性系统, 提出了一些新的概念,发展了一些基本分析工具, 研究了几类控制器的设计问题. 主要成果包括:(1) 针对一类部分动态不可量测的非线性随机系统,引入了随机输入状态稳定(SISS)的概念, 借助于分析概率理论,发展了随机系统改变能量函数方法, 成功地处理了随机微分中的伊藤项,给出了随机非线性串联系统SISS的小增益类条件. (2) 对一类具有SISS随机逆动态的大规模随机非线性系统,给出了分散自适应输出反馈镇定控制器的构造性设计方法. 既解决了实用镇定问题也解决了渐近镇定问题. 在分散控制框架内,给出了处理随机非线性逆动 态的方法. (3) 对一类具有不稳定零动态的随机非线性系统,引入了随机输入状态可镇定的概念,给出了全局输出反馈镇定控制器构造性设计方法. (4) 对一类具有线性增长的不可量测状态的随机非线性系统,针对方差未知的噪声和一般随机输入,引入了广义随机输入状态稳定(GSISS)的概念,分别给出了随机干扰抑制和渐近镇定的输出反馈控制器的构造性设计方法.(5) 对一般的时滞随机非线性系统, 给出了解存在唯一的判定条件,引入了依概率全局(渐近)稳定的概念及相应的判定准则,丰富了随机时滞非线性系统的控制器设计理论. 对一类不确定随机时变时滞系统,构造性地设计出了自适应输出反馈镇定控制器.  相似文献   

17.
18.
This paper is concerned with the protocol-based control design problem for wind turbine generator systems (WTGSs) via a proportional-integral observer. Considering the variable actual wind speed, the operation points of WTGSs between different subareas are described by a semi-Markov jump process. To efficiently modulate transmission frequency, an adaptive-memory event-triggered protocol (AMETP) is constructed using a sequence of previously broadcasted packets and adaptive triggering thresholds, resulting in better dynamic performance. Benefitting from the parameter-dependent Lyapunov stable theory, some sufficient criteria are formulated for the stochastic stability of the closed-loop systems. At last, the feasibility of the presented approach is tested via a numerical example.  相似文献   

19.
This paper studies the stochastic stability problem for Markovian jump systems with unified uncertain transition rates via multiple integral techniques. The considered transition rates unify some existing ones in a framework, which are more general and practical. A multiple-integral-type Lyapunov–Krasovskii functional (MITLKF) is constructed, which contains more ply of integral terms than some existing ones. In order to obtain a tighter bound of the MITLKF, an auxiliary function-based multiple integral inequality (AFMII) is proposed, which encompasses some existing ones as its special cases. Based on these ingredients, a novel stability condition is derived for Markovian jump systems with the unified uncertain transition rates. The effectiveness of the proposed approach is demonstrated by two examples.  相似文献   

20.
In this article, an adaptive fuzzy control method is proposed for induction motors (IMs) drive systems with unknown backlash-like hysteresis. First, the stochastic nonlinear functions existed in the IMs drive systems are resolved by invoking fuzzy logic systems. Then, a finite-time command filter technique is exploited to overcome the obstacle of “explosion of complexity” emerged in the classical backstepping procedure during the controller design process. Meanwhile, the effect of the filter errors generated by command filters is decreased by utilizing corresponding error compensating mechanism. To cope with the influence of backlash-like hysteresis input, an auxiliary system is constructed, in which the output signal is applied to compensate the effect of the hysteresis. The finite-time control technology is adopted to accelerate the response speed of the system and reduce the tracking error, and the stochastic disturbance and backlash-like hysteresis are considered to improve control accuracy. It’s shown that the tracking error can converge to a small neighborhood around the origin in finite-time under the constructed controller. Finally, the availability of the presented approach is validated through simulation results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号