首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies the input-to-state stabilization problem of nonlinear time-delay systems. A novel event-triggered hybrid controller is proposed, where feedback controller and distributed-delayed impulsive controller are taken into account. By using the Lyapunov-Krasovskii method, sufficient conditions for input-to-state stability are constructed under the designed event-triggered hybrid controller, the relation among control parameters, threshold parameter of the event-triggered mechanism and time delay in the impulsive signals is derived. Compared with the existing results, the obtained input-to-state stability criteria are applicable to time-delay systems with stabilizing delay-dependent impulsive effects and destabilizing ones. Numerical examples are provided to demonstrate the effectiveness of the theoretical results.  相似文献   

2.
《Journal of The Franklin Institute》2022,359(18):10525-10557
This paper is concerned with an event-triggered adaptive fault-tolerant problem for an uncertain non-affine system. The implicit function theorem and mean value theorem are utilized to transform a non-affine system into an affine one, and an extended state observer and a tracking differentiator are used to estimate unknown dynamics and the derivative of virtual control laws, respectively. Adaptive laws are designed for unknown faults, and an event-triggered control scheme with a time-varying threshold, based on a tracking error and adaptive parameters, is developed. The tracking error is steered to converge to a bounded set with the help of a predefined performance function, and its transient performance is improved despite of faults. The stability of the closed-loop system is analyzed by the theorem of the input-to-state practically stability, and the Zeno behavior is excluded. Finally, two examples are given to illustrate the effectiveness of the proposed scheme.  相似文献   

3.
This paper is concerned with an event-triggered sliding mode control (SMC) scheme for trajectory tracking in autonomous surface vehicles (ASVs). First, an event-triggered variable that consists of tracking error, desired trajectory and exogenous input of the reference system is introduced to decrease the magnitude of the robust SMC term. Then, the reaching conditions of the designed event-triggered sliding mode are established. Moreover, the event-triggered induced errors that exist in the rotation matrix of the ASV are analyzed. In the presence of parameter uncertainties and external disturbances, the proposed event-triggered SMC scheme can ensure the control accuracy and low-frequency actuator updates. Then both actuator wear and energy consumption of the actuators can be reduced comparing with the traditional time-triggered controller. The proposed controller not only guarantees uniform ultimate boundedness of the tracking error but also ensures non-accumulation of inter-execution times. The results are illustrated through simulation examples.  相似文献   

4.
In this paper, a subspace predictive control (SPC) method with a novel data-driven event-triggered law is proposed for linear time-invariant systems with unknown model parameters. Based on the conventional SPC method, the event-triggered law is introduced to substitute the typical receding horizon optimization, which reduces the data computation load of the traditional SPC method. The key parameters of the event-triggered law are derived by the Q-learning method via system data and the input-to-state stability of the system can be ensured with the designed event-triggered law. The simulation results illustrate the effect and merits of the proposed method with comparisons.  相似文献   

5.
This paper is concerned with the event-triggered dynamic output feedback tracking control for large-scale interconnected systems with disturbances. For each node, a novel event-triggered mechanism is driven by local relative output tracking error to determine whether the signal will be transmitted. A two-step optimization is applied for dynamic output feedback controller design which guarantees robust stability of the system with an optimal H disturbance attenuation level. Finally, a simulation example of master-slave multiple vehicles is given to illustrate the effectiveness of the proposed scheme.  相似文献   

6.
This article investigates the finite-time consensus problem for the attitude system of multiple spacecraft under directed graph, where the communication bandwidth constraint, inertia matrix uncertainties and external disturbances are considered. An event-triggered communication mechanism is developed to address the problem of communication bandwidth constraint. In this event-triggered mechanism, spacecraft sends their attitude information to their neighbors only when the given event is triggered. Furthermore, an adaptive law is designed to counteract the effect of inertia matrix uncertainties and external disturbances. Then, a finite-time attitude consensus tracking control scheme is proposed based on the event-triggered communication mechanism and adaptive law. The proposed control scheme can guarantee the finite-time stability and convergence of the multiple spacecraft systems and exclude the Zeno phenomenon. Finally, simulation results validate the effectiveness of the proposed control scheme.  相似文献   

7.
This paper deals with the containment control problem for multi-agent systems with exogenous disturbances. A disturbance observer-based control approach is employed to estimate the disturbances generated by an exogenous system. Consequently, distributed disturbance observer-based containment control protocols are proposed by using the state feedback control and the output feedback control, respectively. Furthermore, with the help of algebraic graph theory and Lyapunov stability theory, sufficient conditions are established to ensure that multi-agent systems with exogenous disturbances can achieve containment control via the disturbance observer-based approach. Finally, the effectiveness of our theoretical results is verified by providing numerical simulation examples.  相似文献   

8.
This work investigates the problem of distributed control for large-scale systems, in which a communication network is available to exchange information. To avoid the unnecessary communication, an event-triggered control (ETC) mechanism is introduced, in which the transmission occurs only when a certain event is triggered. Under the assumption that only the output signal is available, the static output feedback (SOF) is considered in this work. The aim of the co-design is to design an SOF controller and an ETC condition simultaneously such that the overall closed-loop system is stabilized with a certain level of performance. To this end, an event-triggering scheme based on output signals is proposed to determine when the event is triggered. Then the closed-loop system is modeled as a linear perturbed system. The distributed control co-design is formulated as a convex optimization problem with linear matrix inequalities (LMIs) constraints. Finally, a numerical example is presented to show the effectiveness of the proposed design method.  相似文献   

9.
The study aims to explore the optimal actuator switching scheme of observer-based event-triggered state feedback control for distributed parameter systems. The performance of distributed parameter systems is improved through the observer-based event-triggered control, in which the state feedback is updated only when a triggered event happens. In such an event-triggered mechanism, the event-based closed-loop system and minimum time interval between consecutive events are bounded. Based on finite horizon linear quadratic regulator (LQR) optimal control, the optimal switching algorithm is proposed based on the event-triggered mechanism during an unfixed time interval. Finally, the proposed scheme is verified through a simulation case.  相似文献   

10.
This paper develops new practical stability criteria for continuous-time stochastic nonlinear system with uncertainties and external disturbances. Two cases of the system are considered: the system with state-dependent disturbance and the system with state-independent disturbance. Based on the event-triggered mechanism and Lyapunov function, we establish the input-to-state practical exponential stability in mean square for each case of the system. The obtained results improve some previous works in the literature. Finally, several examples are given to show the effectiveness and practicability of the main results.  相似文献   

11.
This paper investigates the control-based event-triggered sliding mode control for a networked linear system whose feedback information is transmitted over a digital communication network. In this paper, a novel event-triggered mechanism based on control value is proposed. Different from traditional event-triggered mechanisms that are normally based on states, our mechanism pays more attention to the desired control input value of the system. When the deviation between the current control input and the control input being calculated on the basis of the previous system state exceeds a given threshold, an event is triggered. For the sake of reducing the information to be transmitted, a quantization policy is executed and only a few bits are needed to transmit the feedback symbol of each sample. The combination of the control-based event-triggered mechanism and the quantization policy can significantly reduce both the transmission frequency and the number of bits of each feedback packet. For the concerned system, sliding mode control is implemented. The reachability of the sliding mode surface and the robust stability of the system are analyzed by fully taking quantization effects into account. Moreover, the effects of transmission delay of feedback packets on the event-triggering mechanism are considered. Under the proposed mechanism, the lower bound of event intervals is proven to be non-zero, i.e., the Zeno behavior is excluded. Simulations of a mechanical system are done to further verify the superiority of the proposed mechanism.  相似文献   

12.
This paper considers to stabilize an uncertain scalar continuous-time nonlinear system with bounded network delay and process noise, which transmits all feedback signals through a digital communication network. In order to save the bandwidth of the feedback network, stability is expected to be maintained at as low as possible feedback bit rate. Based on event triggering, this paper proposes a model-based event-triggered sampling strategy to guarantee the desired input-to-state stability of the concerned system. Due to the bounded network delay, the receiving time instant of a feedback packet cannot be precisely controlled by the sensor, i.e., the receiving time instant is not always equal to its sampling time instant. Their gap, i.e., the network delay, determines how much information can be carried through the receiving time instant and makes great impact on the system’s stability. Sufficient bit rate conditions to stabilize that system are derived. The conditions are determined by the parameter of Lipschitz condition, the upper bound of the network delay and the system uncertainty. Compared with the periodic sampling strategies, a lower bit rate is required by the proposed event-triggered strategy. Simulations are done to verify the effectiveness of the achieved stabilizing bit rate conditions.  相似文献   

13.
This paper studies the cooperative adaptive dual-condition event-triggered tracking control problem for the uncertain nonlinear nonstrict feedback multi-agent systems with nonlinear faults and unknown disturbances. Under the framework of backstepping technology, a new threshold update method is designed for the state event-triggered mechanism. At the same time, we develop a novel distributed dual-condition event-triggered strategy that combined the fixed threshold triggered mechanism acted on the controller with the new event-triggered mechanism, which can better reduce the waste of communication bandwidth. To deal with the algebraic loop problem caused by the non-affine nonlinear fault, the Butterworth low-pass filter is introduced. At the same time, the unknown function problems are solved by the neural network technology. All signals of the system are semiglobally uniformly ultimately bounded and the tracking performance is achieved, which proved by the Lyapunov stability theorem. Finally, the results of the simulation test the efficiency of the proposed control scheme.  相似文献   

14.
The tracking problem of the fractional-order nonlinear systems is assessed by extending new event-triggered control designs. The considered dynamics are accompanied by the uncertain strict-feedback form, unknown actuator faults and unknown disturbances. By using the neural networks and the fault compensation method, two adaptive fault compensation event-triggered schemes are designed. Unlike the available control designs, two static and dynamic event-triggered strategies are proposed for the nonlinear fractional-order systems, in a sense that the minimum/average time-interval between two successive events can be prolonged in the dynamic event-triggered approach. Besides, it is proven that the Zeno phenomenon is strictly avoided. Finally, the simulation results prove the effectiveness of the presented control methods.  相似文献   

15.
The leader-following bipartite consensus of multi-agent systems (MASs) with matched uncertainty is investigated by using the fully distributed asynchronous edge-based event-triggered mechanism. Firstly, event-triggered mechanisms are constructed for each edge and the leader to decrease the consumption of system resources. The state feedback and output feedback control protocols are proposed, which do not depend on the global values of the communication graph. Secondly, sufficient conditions for the bipartite consensus of MASs are obtained by Lyapunov stability theory. Thirdly, the feasibility of the proposed event-triggered mechanisms is further verified by exclusion of Zeno phenomenon. Finally, the effectiveness of control protocol is illustrated by simulation.  相似文献   

16.
In the study, an adaptive event-triggered control strategy is proposed for image-based visual servoing of eye-to-hand robot manipulators, where the camera used does not need to be calibrated, and the dynamics behavior of manipulator is considered in design and analysis. To address the uncertainty in camera parameters and the nonlinearity in robot dynamics, and accommodate the errors between the real-time control signals and the piecewise-constant event-triggered control signals, a new and novel robust adaptive estimation approach is developed, and well fused with visual feedback control design so that the boundedness of all closed-loop signals, and the asymptotic convergence of image error towards zero are established simultaneously. Besides rigorous proof in theory, the obtained results are also confirmed by comparative simulation tests.  相似文献   

17.
This paper is concerned with the decentralized event-triggered H control for switched systems subject to network communication delay and exogenous disturbance. Depending on different physical properties, the system state is divided into multiple communication channels and decentralized sensors are employed to collect signals on these channels. Furthermore, decentralized event-triggering mechanisms (DETMs) with a switching structure are proposed to determine whether the sampled data needs to be transmitted. In particular, an improved data buffer is presented which can guarantee more timely utilization of the sampled data. Then, with the proposed DETMs and data buffer, a time-delay closed-loop switched system is developed. After that, sufficient conditions are presented to guarantee the H performance of the closed-loop switched system by utilizing the average dwell time and piecewise Lyapunov functional method. Since the event-triggered instants and the switching instants may stagger with each other, the influence of their coupling on the H performance analysis is systematically discussed. Subsequently, sufficient conditions for designing the event-triggered state feedback controller gains are provided. Finally, numerical simulations are given to verify the effectiveness of the proposed method.  相似文献   

18.
This paper studies the problem of designing a resilient control strategy for cyber-physical systems (CPSs) under denial-of-service (DoS) attacks. By constructing an H observer-based periodic event-triggered control (PETC) framework, the relationship between the event-triggering mechanism and the prediction error is obtained. Then, inspired by the maximum transmission interval, the input-to-state stability of the closed-loop system is proved. Compared with the existing methods, a Zeno-free periodic PETC scheme is designed for a continuous-time CPS with the external disturbance and measurement noise. In particular, the objective of maximizing the frequency and duration of the DoS attacks is achieved without losing robustness. Finally, two examples are given to verify the effectiveness of the proposed approach.  相似文献   

19.
In this paper, the event-triggered decentralized control problem for interconnected nonlinear systems with input quantization is investigated. A state observer is constructed to estimate the unmeasurable states, and the state-dependent interconnections are accommodated by presenting some smooth functions. Then by employing backstepping technique and neural networks (NNs) approximation capability, a novel decentralized output feedback control strategy and an event-triggered mechanism are designed simultaneously. It is proved through Lyapunov theory that the closed-loop system is stable and the tracking property of all subsystems is guaranteed. Finally, the effectiveness of the proposed scheme is illustrated by an example.  相似文献   

20.
The robust control problem of a class of uncertain systems subject to intermittent measurement as well as external disturbances is considered. The disturbances are supposed to be generated by an exogenous system, while the state information is assumed to be available only on some nonoverlapping time intervals. A composite design consisting of an intermittent state feedback controller augmented by a disturbance compensation term derived from a disturbance observer is formulated. Unlike the conventional disturbance observers, the proposed disturbance observer is modelled by a switched impulsive system, which makes use of the intermittent state data to estimate the disturbances. Stability analysis of the resulting closed-loop system is performed by applying a piecewise time-dependent Lyapunov function. Then a sufficient condition for the existence of the proposed composite controllers is derived in terms of linear matrix inequalities (LMIs). The controller and observer gains can be achieved by solving a set of LMIs. Further, a procedure to limit the norms of the controller and observer gains is given. Finally, an illustrative example is presented to demonstrate the validity of the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号