首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
近几年肌酸已成为最流行的运动营养补剂。国外大量有关肌酸的文献认为,人体使用肌酸使运动后磷酸肌酸再合成速率加快,力量和速度增强,从而提高运动成绩。肌酸不属于国际奥委会所列违禁药物范围.短期使用未见明显毒副作用,因此成为国内外体育科学界的一个热点。本文从生理、生化角度对肌酸的性质、在运动中的作用及使用方法、注意事项等进行综述。  相似文献   

2.
尹诒顺 《中华武术》2007,(11):22-23
肌酸是天然存在于肌体的营养素。95%的肌酸都存在于骨骼肌中。肌肉内充足的肌酸可以保证运动中消耗的 ATP(三磷酸腺苷)的再合成,最大限度地减少肌肉局部乳酸的生成,从而使人体能在更高强度下运动更长时间。这就可以帮助人体增强力量,增加做功能力,增长肌肉,并使人体不会过早产生疲劳。研究表明肌酸可以增加肌纤维摄取蛋白  相似文献   

3.
1997年walker在研究中发现体内肌酸来源于二个途径:一是饮食,另一部分由肝、肾等器官合成。大约95%的肌酸存在于肌肉中,他由此判定肌酸从合成部位到达肌肉存在着转运系统。越来越多的研究表明,补充肌酸可以增加肌肉内磷酸肌酸的含量,提高ATP的利用率和运动能力,延缓疲劳发生,对短时间、大强度、间歇性的重复运动具有重要作用。  相似文献   

4.
目的:观察运动员在系统训练过程中服用丙酮酸肌酸、肌酸和肉碱时身体成分及运动能力的不同影响.方法:36名国家青年篮球队退动员,随机分为安慰剂组、丙酮酸肌酸组、肌酸组和肉碱组.正常训练同时持续6周服用营养补剂和安慰剂,实验前、后进行身体成分测试和运动能力测试.结果:在系统训练中使用丙酮酸肌酸可以明显减少运动员的脂肪,降低体脂百分数;能够明显增加运动员肌肉重量和去脂体重;明显提高运动员运动能力.男运动员在系统训练中使用肌酸和丙酮酸肌酸,可以减少身体脂肪,但使用丙酮酸肌酸减少脂肪的幅度更大;同时,使用丙酮酸肌酸还能够明显增加肌肉重量;在系统训练中使用丙酮酸肌酸比肌酸更能提高运动能力且没有副反应.女运动员在训练中使用肉碱和丙酮酸肌酸均能减少身体脂肪、提高运动能力,丙酮酸肌酸的效果更明显.结论:在系统训练中使用丙酮酸肌酸比肌酸和肉碱更能减少运动员身体脂肪、增加肌肉重量,提高运动能力.  相似文献   

5.
HMβ与运动能力(综述)   总被引:6,自引:1,他引:5  
HMβ成为国际市场上最为流行的运动营养剂之一,而国内还比较光见,国外大量文献报道,运动人体使用HMβ可促进肌肉本积增长和提高力量,还可烯烧脂肪、增长耐力。此外,HMβ与肌酸、磷酸盐配合使用可增强功效,目前尚末见到有关HMβ副作用的报道。  相似文献   

6.
口服补充肌酸可使骨骼肌的肌酸摄取增强,但又受胰岛素水平、运动训练状况及肌纤雏型等多种因素的影响。肌酸补充后骨骼肌糖代谢能力增强,主要表现为血糖降低、骨骼肌糖原合成增强、骨骼肌葡萄糖转运蛋白4的表达上调,以及柠檬酸合酶活性升高。肌酸增强骨骼肌糖代谢的机制,可能与细胞体积增大而引发的细胞内信号转导改变有关。  相似文献   

7.
肌酸是一种能够促进肌肉生长以及短时间提供能量的营养素,在最近几年的体育训练教学中,笔者也逐渐尝试给学生在运动训练中适量补充肌酸,并发现配合运动训练适量补充肌酸的确有助于提高学生肌肉爆发力的提高。但对于肌酸的使用还应注意相关的一些事项。现根据这几年的经验总结,就笔者对于肌酸的认识和使用心得和大家做一分享。  相似文献   

8.
潘志军 《山西体育科技》2000,20(3):36-37,41
1832年法国科学家Chevreul首先在肌肉中发现了肌酸。15年后,Ll1iberg发现野生狐狸肌肉中肌酸的含量是圈养狐狸的10倍,他认为肌肉的收缩过程肯定有肌酸参与。1979年Walker在研究中发现体内肌酸来源于二个途径:一是饮食,另一部分由肝、肾等器官合成。大约95%的肌酸存在于肌肉中,他由此判定肌酸从合成部位到达肌肉存在着转运系统。  相似文献   

9.
肌酸的补充与运动能力   总被引:8,自引:2,他引:6  
本文从肌酸在能量代谢中的作用、补充肌酸对肌肉中肌酸含量的影响和对运动能力的影响等方面进行了文献综述与分析。  相似文献   

10.
氨和运动   总被引:3,自引:0,他引:3  
氨是氨基酸代谢的产物。运动时肌肉氨基酸代谢增强,运动肌肉从摄取氨转向释放氨;运动使肝血流量下降,氨通过合成尿素而解毒的速率下降,使血氨浓度升高。本文论述了运动时骨骼肌产氨的途径,高血氨对中枢神经系统的影响,以及高血氨与周围疲劳和中枢性疲劳的关系。  相似文献   

11.
运动中补充肌酸的作用机制   总被引:7,自引:0,他引:7  
通过查阅近几年的文献,综述了运动中补充肌酸的作用机制。认为,肌酸作为一种能量补剂广泛应用于体育运动中;运动中补充肌酸作用的潜在机制与能量代谢等因素密切相关;肌酸可以提高运动员的肌肉力量和短时间全力运动的输出功率;补充肌酸也可能刺激氧化磷酸化,促进运动后肌糖原的积累,为补充肌酸提高耐力运动水平的理论依据;补充肌酸还可能具有直接抗氧化特性,从而延迟运动性疲劳的发生,提高机体运动能力。  相似文献   

12.
肌酸的补充与运动供能能力   总被引:2,自引:0,他引:2  
本文综述了补充肌酸对运动中能量代谢的影响。肌酸作为1种能量补剂受到广泛关注。在参阅了大量文献后,笔者从肌酸对磷酸原供能系统、糖酵解供能系统和有氧氧化供能系统的影响,分析了肌酸对运动中能量代谢的影响。  相似文献   

13.
Three samples of Creatine Serum ATP Advantage from Muscle Marketing USA, Inc. were assayed for creatine by two different techniques by four independent laboratories, and for creatinine by two different techniques by two laboratories. A further sample was assayed for phosphorylcreatine. Dry weight and total nitrogen were also analysed. Six male volunteers ingested in random order, over 3 weeks: (A) water; (B) 2.5 g creatine monohydrate (Cr.H2O) in solution; and (C) 5 ml Creatine Serum (reportedly containing an equivalent amount of Cr.H2O). Blood samples were collected before and up to 8 h after each treatment and plasma was analysed for creatine and creatinine. Eight-hour urine samples were analysed for creatine. Ingestion of 2.5 g creatine monohydrate in solution resulted in a significant increase in plasma creatine (from 59.1+/-11.8 micromol.l(-1) to 245.3+/-74.6 microM micromol.l(-1); mean+/-s) and urinary creatine excretion. No increase in plasma or urinary creatine or creatinine was found on ingestion of Creatine Serum or water. Analysis showed 5 ml of Creatine Serum to contain <10 mg Cr.H2O and approximately 90 mg creatinine. Phosphorylcreatine was not detectable and only a trace amount of phosphorous was present. Total nitrogen analysis ruled out significant amounts of other forms of creatine. We conclude that the trace amounts of creatine in the product would be too little to affect the muscle content even with multiple dosing.  相似文献   

14.
Three samples of Creatine Serum? ATP Advantage from Muscle Marketing USA, Inc. were assayed for creatine by two different techniques by four independent laboratories, and for creatinine by two different techniques by two laboratories. A further sample was assayed for phosphorylcreatine. Dry weight and total nitrogen were also analysed. Six male volunteers ingested in random order, over 3 weeks: (A) water; (B) 2.5?g creatine monohydrate (Cr?·?H2O) in solution; and (C) 5?ml Creatine Serum? (reportedly containing an equivalent amount of Cr?·?H2O). Blood samples were collected before and up to 8?h after each treatment and plasma was analysed for creatine and creatinine. Eight-hour urine samples were analysed for creatine. Ingestion of 2.5?g creatine monohydrate in solution resulted in a significant increase in plasma creatine (from 59.1±11.8?μmol?·?l?1 to 245.3±74.6?μM μmol?·?l?1; mean±s) and urinary creatine excretion. No increase in plasma or urinary creatine or creatinine was found on ingestion of Creatine Serum? or water. Analysis showed 5?ml of Creatine Serum? to contain <10?mg Cr?·?H2O and approximately 90?mg creatinine. Phosphorylcreatine was not detectable and only a trace amount of phosphorous was present. Total nitrogen analysis ruled out significant amounts of other forms of creatine. We conclude that the trace amounts of creatine in the product would be too little to affect the muscle content even with multiple dosing.  相似文献   

15.
Abstract

The ergogenic and therapeutic effects of increasing muscle creatine by supplementation are well-recognized. It appears that similar benefits to brain function and cognitive processing may also be achieved with creatine supplementation, however research in this area is more limited, and important knowledge gaps remain. The purpose of this review is to provide a comprehensive overview of the current state of knowledge about the influence of creatine supplementation on brain function in healthy individuals. It appears that brain creatine is responsive to supplementation, however higher, or more prolonged dosing strategies than those typically used to increase muscle creatine, may be required to elicit an increase in brain creatine. The optimal dosing strategy to induce this response, is currently unknown, and there is an urgent need for studies investigating this. When considering the influence of supplementation strategies on cognitive processes, it appears that creatine is most likely to exert an influence in situations whereby cognitive processes are stressed, e.g. during sleep deprivation, experimental hypoxia, or during the performance of more complex, and thus more cognitively demanding tasks. Evidence exists indicating that increased brain creatine may be effective at reducing the severity of, or enhancing recovery from mild traumatic brain injury, however, only limited data in humans are available to verify this hypothesis, thus representing an exciting area for further research.  相似文献   

16.
Abstract

Several nutritional strategies can optimize muscle bulk and strength adaptations and enhance recovery from heavy training sessions. Adequate energy intake to meet the needs of training and carbohydrate intake sufficient to maintain glycogen stores (>7 g carbohydrate·kg?1·day?1 for women; >8 g carbohydrate·kg?1·day?1 for men) are important. Dietary protein intake for top sport athletes should include some foods with high biological value, with a maximum requirement of approximately 1.7 g·kg?1·day?1 being easily met with an energy sufficient diet. The early provision of carbohydrate (>1 g·kg?1) and protein (>10 g) early after an exercise session will enhance protein balance and optimize glycogen repletion. Creatine monohydrate supplementation over several days increases body mass through water retention and can increase high-intensity repetitive ergometer performance. Creatine supplementation can enhance total body and lean fat free mass gains during resistance exercise training; however, strength gains do not appear to be enhanced versus an optimal nutritional strategy (immediate post-exercise protein and carbohydrate). Some studies have suggested that β-OH-methyl butyric acid (β-HMB) can enhance gains made through resistance exercise training; however, it has not been compared “head to head” with optimal nutritional practices. Overall, the most effective way to increase strength and bulk is to perform sport-specific resistance exercise training with the provision of adequate energy, carbohydrate, and protein. Creatine monohydrate and β-HMB supplementation may enhance the strength gains made through training by a small margin but the trade-off is likely to be greater bulk, which may be ergolytic for any athlete participating in a weight-supported activity.  相似文献   

17.
We investigated the effect of an acute creatine loading (25 g per day for 4 days) and longer-term creatine supplementation (5 g of creatine or 5 g of placebo per day for 2 months) on the performance of 22 elite swimmers during maximal interval sessions. After the acute creatine loading, the mean of the average interval swim times for all swimmers (n = 22) improved (44.3 +/- 16.5 s before vs 43.7 +/- 16.3 s after supplementation; P ? 0.01). Three of the 22 swimmers did not respond positively to supplementation. After 2 months of longer term creatine supplementation or placebo,neither group showed a significant change in swimming performance (38.7 +/-13.5 s before vs 38.7 +/- 14.1 s after for the creatine group; 48.7 +/- 18.0 s before vs 48.7 +/- 18.1 s after for the placebo group). We conclude that, in elite swimmers, 4 days of acute creatine loading improves swimming performance significantly when assessed by maximal interval sessions. However, longer-term supplementation for 2 months (5 g of creatine per day) did not benefit significantly the creatine group compared with the placebo group.  相似文献   

18.
磷酸肌酸在医学及运动中的应用   总被引:4,自引:0,他引:4  
作为高能磷化物的磷酸肌酸在医学领域中广泛应用于治疗心肌缺血和心肌梗死。目前已经证明,磷酸肌酸应用于体育运动中具有提高运动员的无氧耐力、促进运动期间肌肉微循环的改善和对细胞膜的保护作用。  相似文献   

19.
We investigated the effect of an acute creatine loading (25 g per day for 4 days) and longer-term creatine supplementation (5 g of creatine or 5 g of placebo per day for 2 months) on the performance of 22 elite swimmers during maximal interval sessions. After the acute creatine loading, the mean of the average interval swim times for all swimmers (n = 22) improved (44.3+/-16.5 s before vs. 43.7+/-16.3 s after supplementation; P<0.01). Three of the 22 swimmers did not respond positively to supplementation. After 2 months of longer-term creatine supplementation or placebo, neither group showed a significant change in swimming performance (38.7+/-13.5 s before vs. 38.7+/-14.1 s after for the creatine group; 48.7+/-18.0 s before vs. 48.7+/-18.1 s after for the placebo group). We conclude that, in elite swimmers, 4 days of acute creatine loading improves swimming performance significantly when assessed by maximal interval sessions. However, longer-term supplementation for 2 months (5 g of creatine per day) did not benefit significantly the creatine group compared with the placebo group.  相似文献   

20.
In this study, we investigated changes in creatine kinase, perceptual and neuromuscular fatigue of professional rugby league players after match-play. Twenty-three male rugby league players (10 backs, 13 forwards) had their creatine kinase, perceptual ratings of fatigue, attitude to training, muscle soreness, and flight time in a countermovement jump measured before and 1 and 2 days after (day 1 and day 2 respectively) league matches. Total playing time, offensive and defensive contacts were also recorded for each player. Creatine kinase was higher both 1 and 2 days after than before matches (P < 0.05) in forwards and backs. Similarly, perceived fatigue and muscle soreness were higher than pre-match on both days 1 and 2 (P < 0.05), but did not differ between groups (P > 0.05). Jump performance was lower on day 1 but not day 2 for both groups (P < 0.05). While total playing time was longer in backs (P < 0.05), relative frequencies for all contacts were greater in forwards (P < 0.05). Contacts for forwards were correlated with all markers of fatigue (P < 0.05), but only flight time was correlated with offensive contacts in backs (P < 0.05). Despite the mechanisms of fatigue being different between forwards and backs, our results highlight the multidimensional nature of fatigue after a rugby league match and that these markers do not differ between positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号