首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
中点弦问题是解析几何中的重点、热点问题.解圆锥曲线的中点弦问题,很多学生习惯于用所谓“点差法”:首先设出弦的两端点坐标,然后代人圆锥曲线方程相减,得到弦中点的坐标与所在直线的斜率的关系,从而求出直线方程.但是,有时候符合条件的直线是不存在的,这时使用“点差法”便会走入“误区”.下面问题中便有学生经常掉入“陷阱”.题目:已知双曲线 x~2-y~2/2-1,问是否存在直线 l,使 M(1,1)为直线 l 被双曲线所截弦 AB 的中点.若存在,求出直线 l 的方程;若不存在请说明理由.错误解法1:(点差法)设直线与双曲线两交点 A、B 的坐标分别为(x_1,y_1),(x_2,y_2),M 点的坐标为(x_M,y_M).由题设可知直  相似文献   

2.
<正>1.圆锥曲线涉及中点弦求曲线方程和直线方程的问题,经常用点差法设而不求解题例1已知椭圆E:x2/a2/a2+y2+y2/b2/b2=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆E于A,B两点,若AB的中点坐标为(1,-1),求椭圆E的方程。解:设点A(x_1,y_1),B(x_2,y_2),则(x_1-x_2)(x_1+x_2)/a2=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆E于A,B两点,若AB的中点坐标为(1,-1),求椭圆E的方程。解:设点A(x_1,y_1),B(x_2,y_2),则(x_1-x_2)(x_1+x_2)/a2=-(y_1-y_2)(y_1+y_2)/b2=-(y_1-y_2)(y_1+y_2)/b2。  相似文献   

3.
<正>在圆锥曲线的考查中,我们经常会遇到这样的一类问题:圆锥曲线上存在两点关于某条直线对称,求参数的取值范围。这类问题的解法是:设P(x_1,y_1),Q(x_2,y_2)是圆锥曲线上关于直线y=kx+b(k≠0)对称的两点,PQ的中点为M(x_0,y_0),则PQ的方程为y=-1/kx+m,利用点差法、中点坐标公式求得中点坐标,再根据中点与圆锥曲线的位置关系求解。例1已知抛物线C:y2=x与直线l:  相似文献   

4.
<正>解析几何中与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题,这是一类很典型、很重要的问题.一、方法介绍解圆锥曲线的中点弦问题的常见方法有以下几种.方法 1联立消元法,即联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解.方法 2点差法,即设直线与圆锥曲线的交点(弦的端点)坐标为A(x_1,y_1)、B(x_2,y_2),  相似文献   

5.
关于圆锥曲线弦的求法,笔者得到一条结论,现提供于下。 定理:设圆锥曲线C的方程为F(x,y)=0,M、N为C上不同两点,若线段MN的中点为P(a,b),则直线MN的方程为 F(x,y)-F(2a-x,2b-y)=0。 (*) 证明:设M点的坐标为(x_1,y_1),M在圆锥曲线C上,F(x_1,y_1)=0。又因为线段MN的中点P的坐标为(a,b),N的坐标为(2a-x_1,2b-y_1)。又N在圆锥曲线C上,  相似文献   

6.
与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题.解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解.若设直线与圆锥曲线的交点(弦的端点)坐标为A(x1,y1)、B(x2,y2),将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB的中点和斜率有关的式子,可以大大减少运算量.我们称这种代点作差的方法为"点差法".一、以定点为中点的弦所在直线的方程例1过椭圆x2/16+y2/4=1内一点M(2,1)引一条弦,使弦被M点平分,求这条弦所在直线的方程.  相似文献   

7.
一阶导数与二次曲线弦中点间存在着一种内在联系,这种联系为解决二次曲线中点弦一类问题开辟了一条较为简捷的路径.本文就以定理形式揭示这种联系并列举应用. 定理:椭圆x~2/a~2 y~2/b~2=1的以斜率为k的一组平行弦中点轨迹方程是x~2/a~2 yy_x~'/b~2=0(※)(|x|≤a,|y|≤b)其中y_x~'就是平行弦的斜率k,它等于直线(※)与椭圆交点处切线的斜率. 证明:设点P(x_0,y_0)是以k为斜率的弦P_1P_2的中点,点P_1(x_1,y_1),P_2(x_2,y_2)  相似文献   

8.
我们知道,公式|AB|=1+k~2(1/1+k~2)|x_2-x_1|(或|AB|=1+1/k~2(1/1+k~2/1)|y_2-y_1|(k≠0))是是解析几何中,当斜率为k的直线与圆锥曲线相交时,用来求弦长的公式(其中x_1,x_2(或y_1,y_2)分别是两交点的横(纵)坐标).然而,弦长公式只能用来求弦长吗?笔者在高三复习教学中发现,  相似文献   

9.
直线和圆锥曲线的位置关系中,涉及弦的问题特别多,其中以弦的中点问题最为丰富多彩.中点弦问题是中学数学的一类重要问题,解决圆锥曲线的中点弦问题,有以下几种策略.1“设而不求”的策略例1已知P(1,1)为椭圆22194x+y=内一定点,过点P的弦AB被点P平分,求弦AB所在直线的方程.分析常规思路设直线AB的斜率为k由方程组求A、B的坐标,由AB的中点坐标建立k的方程求k,但注意到弦的中点坐标公式x=12(x1+x2),y=12(y1+y2),故可用韦达定理,绕过求交点的步骤.设所求直线的方程y=k(x?1)+1,并过A(x1,y1),B(x2,y2)两点,由方程组:22(1)1,1,94y k xx y????…  相似文献   

10.
求圆锥曲线的切线方程,由于牵涉的知识面较广和解题中的技巧性较强,历来是学生们课外学习中一个饶有兴趣的内容,本文的目的在于,从不同于常规的角度去审视切线,并从中得到几种求切线方程的方法。一切线与平行弦中点轨迹已知曲线Ax~2+By~2+Cx+Dy+F=0 (1) 设P(x_1,y_1),Q(x_2,y_2)是曲线上两点,PQ的斜率为K,M(x,y)为PQ为中点。则 Ax_1~2+By_1~2+Cx_1+Dy_1+F=0 (2)  相似文献   

11.
有关圆锥曲线f(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=0的弦的中点问题,大体可分为两类:一是已知斜率为k的一组平行弦中点的轨迹(也就是直径)的方程;一是以定点(x_0,y_0)为中点的弦所在直线的方程(中点弦的方程)。下面分别作论述。一、斜率为k的一组平行弦中点的轨迹(直径)方程定理1.二次曲线f(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=0的斜率为k的一组平行弦中点的轨迹(即直径)方程是(2A+Bk)x+(B+2Ck)y+(D+Ek)=0①推论二次曲线的直径是一条过斜率为  相似文献   

12.
中点弦问题常见的题型有:1.求中点弦所在的直线方程;2.求弦的中点的轨迹方程;3.求弦长为定值的弦中点的坐标.常用的求解策略是:1.两式相减用中点公式求得斜率;2.联立方  相似文献   

13.
贵刊1983年第5期刊登了《一类直线方程的四种求法》一文,该文介绍了解决如下问题的四种方法:过二次曲线C:F(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=0内部[指包含焦点的平面区域(不包括周界)]已知点M(x_0,y_0)作直线与曲线C相交于两点A(x_1,y_1),B(x_2,y_2),使得点M平分弦AB。对于这类问题,可作如下推广:过M作直线与曲线C相交于两点A(x_1,y_1),B(x_2,y_2),使得M点为弦AB的n等分点。当n≥3时,用《一类直线方程的四种求法》一文介绍的四种方法来求  相似文献   

14.
有关弦中点问题的一般解法采用方程的思想来解决。若充分利用弦中点确定弦的斜率来解决此类问题,将起到化繁为简,化难为易的作用。引理1 设A(x_1,y_1),B(x_2,y_2)两点是曲  相似文献   

15.
<正>在求解圆锥曲线一类问题时,若题目中给出直线与圆锥曲线相交被截得线段中点坐标的时候,把直线和圆锥曲线的两个交点坐标代入圆锥曲线的方程,然后将两个等式作差,得到一个与弦的中点坐标和斜率有关的式子,从中求出直线的斜率,然后利用中点求出直线方程。通常我们将与圆锥曲线的弦的中点有关的问题称之为圆锥曲线的"中点弦问题",把这种代点作差的方法称为"点差法"。"中点弦问题"如果能适时运用点差法,  相似文献   

16.
"点差法"是圆锥曲线中的常见方法,如果能恰当使用,可以降低运算量,优化解题过程.我们对"点差法"的掌握也有境界高低之分,特举以下几例,谈谈点差法在应用中的三重境界.襛术:熟练应用,解决中点和斜率相关问题1.点差法的步骤设直线与圆锥曲线的交点坐标为A(x1,y1),B(x2,y2),将A,B坐标代入圆锥曲线方程,两式作差后分解因式,得到一个与弦的中点和斜率有关的式子,我们称之为"点差法".应用"点差法"的常见题型有:求中点弦方程、求弦中点轨迹、垂直  相似文献   

17.
解析几何中有一类韦达定理与弦长紧密联系的题型,兹举例说明. 首先,给出一个弦长公式表达式. 设直线y=kx+b与非退化圆锥曲线相交于两点A(x_1,y_1),B(x_2,y_2),则 |AB|=((x_1-x_2)~2+(y_1-y_2)~2)~(1/2)(*) 为使(*)与韦达定理紧相联,自然会注意到  相似文献   

18.
椭圆以某定点为中点的弦并非一定存在,那么,中点弦存在的充要条件是什么?有何应用,本文作下列探讨: 一中点弦方程的一种求法。设椭圆b~2x~2 a~2y~2-a~2b~2=0,(a>0,b>0)…(1) 及定点P_0(x_0,y_0),若以P_0为中点的弦存在,且两端点分别为A(x_1,y_1),B(x_2,y_2) 则:b~2x_1~2 a~2y_1~2-a~2b~2=0 b~2x_2~2 a~2y_2~2-a~2b~2=0 两式相减整理得: (y_1-y_2)/(x_1-x_2)=(x_1 x_2)/(y_1 y_2)·b~2/a~2 =-b~2/a~2·x_0/y_0 (x_1≠x_2) 即k=-(b~2x_0)/(a~2y_0),代入点斜式得中点弦方程:a~2y_0y b~2x_0x=a~2y_0~2 b~2x_0~2……(2) 如果x_1=x_2,那么y_0=0,中点弦方程为x=x_0仍包含在(2)中。  相似文献   

19.
<正>关于直线与圆锥曲线相交求弦长,通用方法是将直线y=kx+b代入曲线方程,化为关于x的一元二次方程,设出交点坐标,利用韦达定理及弦长公式((1+k2)[(x_1+x_2)2)[(x_1+x_2)2-4x_1x_2])2-4x_1x_2])(1/2)求出弦长。运用整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过  相似文献   

20.
从抛物线y~2=2px外一点p(x_0,y_0)、向抛物线引两条切线,切点为A,B,则线段AB称为p点的切点弦、切点弦AB的方程是yy_0=p(x+x_0),证明如下: 设切点A、B坐标分别为A(x_1,y_1),B(x_2,y_2),则PA、PB方程分别为:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号