首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The purpose of this study was to determine the between day reliability of power-time measures calculated with data collected using the linear position transducer or the force plate independently, or a combination of the two technologies. Twenty-five male rugby union players performed three jump squats on two occasions one week apart. Ground reaction forces were measured via a force plate and position data were collected using a linear position transducer. From these data, a number of power-time variables were calculated for each method. The force plate, linear position transducer and a combined method were all found to be a reliable means of measuring peak power (ICC = 0.87‐0.95, CV = 3.4%‐8.0%). The absolute consistency of power-time measures varied between methods (CV = 8.0%‐53.4%). Relative consistency of power-time measures was generally comparable between methods and measures, and for many variables was at an acceptable level (ICC = 0.77‐0.94). Although a number of time-dependent power variables can be reliably calculated from data acquired from the three methods investigated, the reliability of a number of these measures is below that which is acceptable for use in research and for practical applications.  相似文献   

2.
This study aimed to evaluate the within- and between-session reliability of force, velocity and power performances and to assess the force-velocity relationship during the deadlift high pull (DHP). Nine participants performed two identical sessions of DHP with loads ranging from 30 to 70% of body mass. The force was measured by a force plate under the participants’ feet. The velocity of the ‘body + lifted mass’ system was calculated by integrating the acceleration and the power was calculated as the product of force and velocity. The force-velocity relationships were obtained from linear regression of both mean and peak values of force and velocity. The within- and between-session reliability was evaluated by using coefficients of variation (CV) and intraclass correlation coefficients (ICC). Results showed that DHP force-velocity relationships were significantly linear (R² > 0.90, p < 0.05). Within sessions and between sessions, mean and peak forces during DHP showed a strong agreement (CV < 3%, ICC > 0.94), mean and peak velocities showed a good agreement (CV < 9%, 0.78 < ICC < 0.92). It was concluded that DHP performance and its force-velocity relationships are highly reliable and can therefore be utilised as a tool to characterise individuals’ muscular profiles.  相似文献   

3.
This study aimed to (1) assess the reliability of the force, velocity, and power output variables measured by a force plate and a linear velocity transducer (LVT) for both the unconstrained and constrained loaded countermovement jump (CMJ), and (2) examine the effect of both the CMJ type and the measurement method on the magnitudes of the same variables. Twenty-three men were tested on the free CMJ and the CMJ constrained by a Smith machine. Maximum values of force, velocity, and power were recorded by a force plate and by a LVT attached to a bar loaded by 17, 30, 45, 60, and 75 kg. The reliability of all mechanical variables proved to be high (ICC > 0.70; CV < 10%) and similar for two CMJ types. However, force plate-derived measures displayed greater reliability than the LVT. The LVT also markedly overestimated the magnitudes of the mechanical variables, particularly at lower external loads. Therefore, although both jump types and both methods could be acceptable for routine testing, we recommend the force platform due to a higher reliability and more accurate magnitudes of the obtained variables. The unconstrained loaded CMJ could also be recommended due to the simpler equipment needed.  相似文献   

4.
Inter-day training reliability and variability in artistic gymnastics vaulting was determined using a customised infra-red timing gate and contact mat timing system. Thirteen Australian high performance gymnasts (eight males and five females) aged 11–23 years were assessed during two consecutive days of normal training. Each gymnast completed a number of vault repetitions per daily session. Inter-day variability of vault run-up velocities (at ‐18 to ‐12 m, ‐12 to ‐6 m, ‐6 to ‐2 m, and ‐2 to 0 m from the nearest edge of the beat board), and board contact, pre-flight, and table contact times were determined using mixed modelling statistics to account for random (within-subject variability) and fixed effects (gender, number of subjects, number of trials). The difference in the mean (Mdiff) and Cohen's effect sizes for reliability assessment and intra-class correlation coefficients, and the coefficient of variation percentage (CV%) were calculated for variability assessment. Approach velocity (‐18 to ‐2 m, CV = 2.4–7.8%) and board contact time (CV = 3.5%) were less variable measures when accounting for day-to-day performance differences, than pre-flight time (CV = 17.7%) and table contact time (CV = 20.5%). While pre-flight and table contact times are relevant training measures, approach velocity and board contact time are more reliable when quantifying vaulting performance.  相似文献   

5.
The purpose of this study was to quantify the inter-session reliability of force–velocity–power profiling and estimated maximal strength in youth. Thirty-six males (11–15 years old) performed a ballistic supine leg press test at five randomized loads (80%, 100%, 120%, 140%, and 160% body mass) on three separate occasions. Peak and mean force, power, velocity, and peak displacement were collected with a linear position transducer attached to the weight stack. Mean values at each load were used to calculate different regression lines and estimate maximal strength, force, velocity, and power. All variables were found reliable (change in the mean [CIM] = ? 1 to 14%; coefficient of variation [CV] = 3–18%; intraclass correlation coefficient [ICC] = 0.74–0.99), but were likely to benefit from a familiarization, apart from the unreliable maximal force/velocity ratio (CIM = 0–3%; CV = 23–25%; ICC = 0.35–0.54) and load at maximal power (CIM = ? 1 to 2%; CV = 10–13%; ICC = 0.26–0.61). Isoinertial force–velocity–power profiling and maximal strength in youth can be assessed after a familiarization session. Such profiling may provide valuable insight into neuromuscular capabilities during growth and maturation and may be used to monitor specific training adaptations.  相似文献   

6.
Track and field events place different demands on athletes and may have an effect on balance. This study investigated the effects of event specialty, gender, and leg dominance on balance among adolescent track and field athletes. Forty healthy adolescent track and field athletes (male = 23, female = 17) categorised into three different groups (sprinter = 20, distance runners = 13, throwers = 7) had their single leg static balance measured with the eyes open and the eyes closed using an AMTI force platform. Dependent variables included average displacement (cm) of the centre of pressure (COP) in the anterior/posterior direction and medial/lateral directions, the average velocity of the COP (cm/s) and the 95% ellipse area (cm2). Variables were analysed using a 3 (event specialty) × 2 (gender) × 2 (leg) ANOVA with repeated measures on the leg variable (p < 0.05). There was a significant difference (p < 0.05) in the average displacement of the COP in the medial/lateral direction for both the eyes open and closed condition, with the non-dominant leg demonstrating greater displacement than the dominant leg. This might increase the risk of injury for the non-dominant leg, but additional data should be collected and analysed on both dynamic balance and performance.  相似文献   

7.
There is a need for reliable analysis techniques for kinetic data for coaches and sport scientists who employ athlete monitoring practices. The purpose of the study was: (1) to determine intra- and inter-rater reliability within a manual-based kinetic analysis program; and (2) to determine test-retest reliability of an algorithm-based kinetic analysis program. Five independent raters used a manual analysis program to analyse 100 isometric mid-thigh pull (IMTP) trials obtained from previously collected data. Each trial was analysed three times. The same IMTP trials were analysed using an algorithm-based analysis software. Variables measured were peak force, rate of force development from 0 to 50 ms (RFD50) and RFD from 0 to 200 ms (RFD200). Intraclass correlation coefficients (ICC) and coefficient of variation (CV) were used to assess intra- and inter-rater reliability. Nearly perfect reliability was observed for the manual-based (ICC > 0.92). However, poor intra- and inter-rater CV was observed for RFD (CV > 16.25% and CV > 32.27%, respectively). The algorithm-based method resulted in perfect reliability in all measurements (ICC = 1.0, CV = 0%). While manual methods of kinetic analysis may provide sufficient reliability, the perfect reliability observed within the algorithm-based method in the current study suggest it is a superior method for use in athlete monitoring programs.  相似文献   

8.
Abstract

The aim of the study was to assess the reliability of a mobile contact mat in measuring a range of stretch–shortening cycle parameters in young adolescents. Additionally, vertical leg stiffness using contact mat data was validated against a criterion method using force–time data. The reliability study involved 18 youths completing a habituation and three separate test sessions, while 20 youths completed a single test session for the validity study. Participants completed three trials of a squat jump, countermovement jump, and maximal hopping test and a single trial of repeated sub-maximal hopping at 2.0 Hz and 2.5 Hz. All tests were performed on the contact mat. Reliability statistics included repeated-measures analysis of variance, intraclass correlation coefficient, and coefficient of variation (CV), while the correlation coefficient (r) and typical error of estimate (TEE) were reported for the validity study. Squat jump height was the most reliable measure (CV = 8.64%), while leg stiffness during sub-maximal hopping, and reactive strength index produced moderate reliability (CV = 10.17–13.93% and 13.98% respectively). Measures of leg stiffness obtained from contact mat data during sub-maximal hopping were in agreement with the criterion measure (r = 0.92–0.95; TEE = 6.5–7.5%), but not during maximal hopping (r = 0.59; TEE = 41.9%). The contact mat was deemed a valid tool for measuring stretch–shortening cycle ability in sub-maximal but not maximal hopping. Although reliability of performance was generally moderate, the tests offer a replicable assessment method for use with paediatric populations.  相似文献   

9.
Abstract

There has been no previous investigation of the concurrent validity and reliability of the current 5 Hz global positioning system (GPS) to assess sprinting speed or the reliability of integrated GPS–accelerometer technology. In the present study, we wished to determine: (1) the concurrent validity and reliability of a GPS and timing gates to measure sprinting speed or distance, and (2) the reliability of proper accelerations recorded via GPS–accelerometer integration. Nineteen elite youth rugby league players performed two over-ground sprints and were simultaneously assessed using GPS and timing gates. The GPS measurements systematically underestimated both distance and timing gate speed. The GPS measurements were reliable for all variables of distance and speed (coefficient of variation [CV] = 1.62% to 2.3%), particularly peak speed (95% limits of agreement [LOA] = 0.00 ± 0.8 km · h?1; CV = 0.78%). Timing gates were more reliable (CV = 1% to 1.54%) than equivalent GPS measurements. Accelerometer measurements were least reliable (CV = 4.69% to 5.16%), particularly for the frequency of proper accelerations (95% LOA = 1.00 ± 5.43; CV = 14.12%). Timing gates and GPS were found to reliably assess speed and distance, although the validity of the GPS remains questionable. The error found in accelerometer measurements indicates the limits of this device for detecting changes in performance.  相似文献   

10.
Abstract

Head impacts resulting in a concussion negatively affect the vestibular system, but little is known about the effect of subconcussive impacts on this system. This study’s objective was to determine if subconcussive head impacts sustained over one competitive lacrosse season, effect sway velocity. Healthy Division I male lacrosse players (n = 33; aged 19.52 ± 1.20 years) wore instrumented helmets to track head impact exposures. At the beginning and end of the season the players completed an instrumented Balance Error Scoring System assessment to assess sway velocity. Score differentials were correlated to the head impact exposure data collected via instrumented helmets when averaged within participant. Paired samples t-tests revealed a post-season increase in sway velocity on the double leg stance, firm surface (p = 0.002, d = 0.59); tandem stance, firm surface (p = 0.033, d = 0.39) and double leg, foam surface (p = 0.014, d = 0.45) A significant correlation was found between change in tandem stance, firm surface sway velocities and linear acceleration (p < 0.001, r = 0.65). It appears subconcussive impacts may result in tandem stance balance deficits. Repetitive head impacts may negatively affect sway velocity, even in the absence of a diagnosed concussion injury.  相似文献   

11.
The current study aimed to assess the validity and test–retest reliability of a linear position transducer when compared to a force plate through a counter-movement jump in female participants. Twenty-seven female recreational athletes (19 ± 2 years) performed three counter-movement jumps simultaneously using the linear position transducer and force plate for validity. In addition, 11 elite female athletes (23 ± 6 years) performed 3 counter-movement jumps with the linear position transducer on three separate days for test–retest reliability. Pearson correlations for jump height between the devices were at a high level (= .90), with the linear position transducer overestimating jump height by 7.0 ± 2.8 cm. The reliability measured by the linear position transducer resulted in a mean intraclass correlation of .70 for jump height, .90 for peak velocity, and .91 for mean velocity. The linear position transducer was reliable for measuring counter-movement jumps in elite female athletes; however, caution should be taken for one-off jump measures as it may over-estimate jump height.  相似文献   

12.
ABSTRACT

The aim of the present investigation was to analyze the validity and reliability of a novel iPhone app (CODTimer) for the measurement of total time and interlimb asymmetry in the 5 + 5 change of direction test (COD). To do so, twenty physically active adolescent athletes (age = 13.85 ± 1.34 years) performed six repetitions in the COD test while being measured with a pair of timing gates and CODTimer. A total of 120 COD times measured both with the timing gates and the app were then compared for validity and reliability purposes. There was an almost perfect correlation between the timing gates and the CODTimer app for the measurement of total time (r = 0.964; 95% Confidence interval (CI) = 0.95–1.00; Standard error of the estimate = 0.03 s.; p < 0.001). Moreover, non-significant, trivial differences were observed between devices for the measurement of total time and interlimb asymmetry (Effect size < 0.2, p > 0.05). Similar levels of reliability were observed between the timing gates and the app for the measurement of the 6 different trials of each participant (Timing gates: Intraclass correlation coefficient (ICC) = 0.651–0.747, Coefficient of variation (CV) = 2.6–3.5%; CODTimer: ICC = 0.671–0.840, CV = 2.2–3.2%). The results of the present study show that change of direction performance can be measured in a valid, reliable way using a novel iPhone app.  相似文献   

13.
Kinetics and full body kinematics were measured in ten elite goalkeepers diving to save high and low balls at both sides of the goal, aiming to investigate their starting position, linear and angular momentum, and legs' contribution to end-performance. Our results showed that goalkeepers adopted a starting position with a stance width of 33 ± 1% of leg length, knee flexion angle of 62 ± 18° and hip flexion angle of 63 ± 18°. The contralateral leg contributed more than the ipsilateral leg to COM velocity (p < 0.01), both for the horizontal (2.7 ± 0.1 m·s?1 versus 1.2 ± 0.1 m·s?1) and for the vertical component (3.1 ± 0.3 m·s?1 versus 0.4 ± 0.2 m·s?1). Peak horizontal and peak angular momenta were significantly larger (p < 0.01) for low dives than for high dives with a mean difference of 55 kg·m·s?1 and 9 kg·m2·s?1, respectively. In addition, peak vertical momentum was significantly larger (p < 0.01) for high dives with a mean difference between dive heights of 113 kg·m·s?1. Coaches need to highlight horizontal lateral skills and exercises (e.g. sideward push-off, sideward jumps), with emphasis on pushing-off with the contralateral leg, when training and assessing goalkeeper’s physical performance.  相似文献   

14.
This study aimed to assess the reliability, usefulness and construct validity of the newly developed Combined Basketball Skill Test (CBST). Fifteen recreational (age = 22.8 ± 4.2 y, stature = 184.8 ± 6.5 cm, body mass = 81.6 ± 9.6 kg, training experience = 9.8 ± 5.3 y) and fifteen semiprofessional (age = 18.9 ± 3.3 y, stature = 190.5 ± 8.1 cm, body mass = 84.2 ± 11.2 kg, training experience = 11.1 ± 3.5 y) players volunteered to participate in this study. Test–retest reliability and usefulness were examined for recreational players, while construct validity was evaluated comparing the two player groups. The CBST is composed of 12 trials and its outcome measures include: completion time (sum of the 12 trial times); penalty time (sum of the times from the 12 trials); performance time (completion time + penalty time) and total number of errors. Relative reliability analysis showed acceptable ICC values (i.e. ≥0.70) in all the studied variables. Absolute reliability analysis showed a CV < 5% for completion (1.6%) and performance (2.0%) time, while a CV >5% is reported for the remaining variables. The usefulness of the test was considered “Marginal” and “Good” when comparing TE values with SWC02 and SWC05, respectively for all the studied variables. Likely and very likely differences were shown between recreational and semiprofessional players in all investigated variables. Results showed that the CBST is reliable, useful to detect moderate changes and valid to assess basketball skills.  相似文献   

15.
This study aimed to investigate the fatigue effects induced by a futsal-specific protocol (FIRP) on sprint performance and the kinematics of the lower limbs. Twenty-one futsal players participated in this study and performed a protocol to simulate the futsal demands. At pre-protocol, half-time and post-protocol, the athletes performed 10-m sprints that were recorded for kinematic analysis. Continuous relative phase (CRP) was calculated to assess the inter-segmental coordination. In addition, vertical (KVERT) and leg (KLEG) stiffness were calculated. Analysis of variance (ANOVA) for repeated measures was used (P < 0.05). The main results showed that sprint time increased (P < 0.01) post-protocol when compared to pre- and half-time conditions. Lower values of the step rate (P = 0.01) and higher values of the leg angular velocity (P = 0.02) were verified at the end of the FIRP. The CRP of thigh–leg and leg–foot and the stiffness did not change over the protocol. In addition, the high correlation of CRP between the conditions revealed no changes in coordination pattern. We concluded that futsal related-fatigue induced a decrement on sprint time, changing the kinematics of the lower limbs (decreasing step rate and increasing leg angular velocity). However, neither stiffness nor intersegment coordination during sprints was affected by fatigue.  相似文献   

16.
Abstract

This study determined the precision of pencil and fan beam dual-energy X-ray absorptiometry (DXA) devices for assessing body composition in professional Australian Football players. Thirty-six professional Australian Football players, in two groups (fan DXA, N = 22; pencil DXA, N = 25), underwent two consecutive DXA scans. A whole body phantom with known values for fat mass, bone mineral content and fat-free soft tissue mass was also used to validate each DXA device. Additionally, the criterion phantom was scanned 20 times by each DXA to assess reliability. Test–retest reliability of DXA anthropometric measures were derived from repeated fan and pencil DXA scans. Fat-free soft tissue mass and bone mineral content from both DXA units showed strong correlations with, and trivial differences to, the criterion phantom values. Fat mass from both DXA showed moderate correlations with criterion measures (pencil: r = 0.64; fan: r = 0.67) and moderate differences with the criterion value. The limits of agreement were similar for both fan beam DXA and pencil beam DXA (fan: fat-free soft tissue mass = ?1650 ± 179 g, fat mass = ?357 ± 316 g, bone mineral content = 289 ± 122 g; pencil: fat-free soft tissue mass = ?1701 ± 257 g, fat mass = ?359 ± 326 g, bone mineral content = 177 ± 117 g). DXA also showed excellent precision for bone mineral content (coefficient of variation (%CV) fan = 0.6%; pencil = 1.5%) and fat-free soft tissue mass (%CV fan = 0.3%; pencil = 0.5%) and acceptable reliability for fat measures (%CV fan: fat mass = 2.5%, percent body fat = 2.5%; pencil: fat mass = 5.9%, percent body fat = 5.7%). Both DXA provide precise measures of fat-free soft tissue mass and bone mineral content in lean Australian Football players. DXA-derived fat-free soft tissue mass and bone mineral content are suitable for assessing body composition in lean team sport athletes.  相似文献   

17.
The purpose of this study was to determine the reliability of maximum voluntary isometric force (MVIF), cross-sectional area (CSA) and force per unit CSA measures, of the first dorsal interosseus (FDI) muscle, using a custom-built dynamometer and ultrasonography. Twenty-seven participants completed MVIF and CSA measurements on two separate occasions under the same conditions. Reliability was determined using paired samples t-tests, systematic bias ratio and ratio limits of agreement (RLoA), intra-class correlation (ICC) and coefficient of variation (CV). MVIF of the FDI muscle (mean ± s; 31.8 ± 7.6 N and 31.6 ± 7.3 N) was not different between trials (= 0.63); RLoA between trials were 1.00 ×/÷ 1.09, ICC = 0.990 and CV = 3.22%. CSA of the FDI muscle (22.6 ± 6.9 and 22.9 ± 6.9 mm2) was also not different between trials (= 0.31); RLoA between trials were 0.98 ×/÷ 1.19, ICC = 0.979 and CV = 6.61%. Force per unit CSA was not different between trials (1.49 ± 0.43 and 1.46 ± 0.44 N·mm2; = 0.18), RLoA were 1.02 ×/÷ 1.17, ICC = 0.985 and CV = 5.76%. The techniques used to determine MVIF and CSA of the FDI muscle were reliable and can be combined to calculate force per unit CSA.  相似文献   

18.
The aim of this study was to quantify clearance mechanics during gait. Seventeen children diagnosed with hemiplegic cerebral palsy underwent a three-dimensional gait analysis evaluation. Dynamic leg lengths were measured from the hip joint center to the heel, to the ankle joint center and to the forefoot throughout the gait cycle. Significant asymmetry was observed during stance, initial and terminal swing phases, where the hemiplegic limb was found shorter by using a paired t-test at 51 sample points (p < .05). The hemiplegic side was restricted in achieving maximal length during terminal swing. The ratio between the maximal dynamic leg length during the stance phase to minimal dynamic leg length during the swing phase was found higher on the non-involved side and lower on the hemiplegic side (p < .05). Quantifying clearance mechanics based on dynamic leg length can provide an additional insight into the analysis of gait patterns and might assist in detecting time of abnormal kinematic deviations.  相似文献   

19.
The reliability of grinding performance was assessed in 18 current Emirates Team New Zealand America's Cup sailors in two test sessions separated by 5 h using a custom-built ergometer. Sixteen different grinding conditions that varied by load (Light 39 N·m, Moderate 48 N·m, Heavy 68 N·m), deck heel (Flat 0° control, Downhill 25°, Uphill 25°, Right 25°, Left 25°), and grinding direction (forwards, backwards) were assessed using peak power and external work over 5 s during maximal-effort 8-s grinds. Reliability statistics included the difference in mean (Mdiff), standard error of measurement (SEM), and intraclass correlation coefficients (ICC). External work (SEM = 1.6–6.9%; ICC = 0.91–0.99) was a more consistent performance measure than peak power (SEM = 1.3–9.6%; ICC = 0.84–0.99) across all test conditions. Testing under different load conditions resulted in external work SEMs of 1.6–3.9% with performance more reliable in lighter load conditions. Grinding performance during different heel conditions was less reliable (external work SEMs = 4.6–6.9%). Grinding direction (forward or backward) did not appear to affect performance reliability, although external work was 10–15% higher in forward grinding. Reliability is acceptable across various loads, but testing under different heel conditions may need some protocol development to allow the detection of smaller differences in performance.  相似文献   

20.
The purpose of this study was to compare arm–leg coordination and kinematics during 100 m breaststroke in 26 (8 female; 18 male) specialist breaststroke swimmers. Laps were recorded using three 50-Hz underwater cameras. Heart rate and blood lactate were measured pre- and post-swim. Arm–leg coordination was defined using coordination phases describing continuity between recovery and propulsive phases of upper and lower limbs: coordination phase 1 (time between end of leg kick and start of the arm pull phases); and coordination phase 2 (time between end of arm pull and start of leg kick phases). Duration of stroke phases, coordination phases, swim velocity, stroke length (SL), stroke rate (SR) and stroke index (SI) were analysed during the last three strokes of each lap that were unaffected by turning or finishing. Significant changes in velocity, SI and SL (P < 0.05) were found between laps. Both sexes showed significant increase (P < 0.05) in heart rate and blood lactate pre- to post-swim. Males had significantly (P < 0.01) faster swim velocities resulting from longer SLs (P = 0.016) with no difference in SR (P = 0.064). Sex differences in kinematic parameters can be explained by anthropometric differences providing males with increased propelling efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号