首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This modelling study sought to describe the relationships between elbow joint kinematics and wrist joint linear velocity in cricket fast bowlers, and to assess the sensitivity of wrist velocity to systematic manipulations of empirical joint kinematic profiles. A 12-camera Vicon motion analysis system operating at 250 Hz recorded the bowling actions of 12 high performance fast bowlers. Empirical elbow joint kinematic data were entered into a cricket bowling specific “Forward Kinematic Model” and then subsequently underwent fixed angle, angular offset and angle amplification manipulations. A combination of 20° flexion and 20° abduction at the elbow was shown to maximise wrist velocity within the experimental limits. An increased elbow flexion offset manipulation elicited an increase in wrist velocity. Amplification of elbow joint flexion–extension angular displacement indicated that, contrary to previous research, elbow extension range of motion and angular velocity at the time of ball release were negatively related to wrist velocity. Some relationships between manipulated joint angular waveforms and wrist velocity were non-linear, supporting the use of a model that accounts for the non-linear relationships between execution and outcome variables in assessing the relationships between elbow joint kinematics and wrist joint velocity in cricket fast bowlers.  相似文献   

2.
Abstract

The aim of this study was to examine the relationship between shoulder alignment and elbow angle during the delivery action of fast-medium bowlers. The elbow and upper trunk alignment were recorded for 13 high-performance bowlers (mean age 20 years) using a 12-camera Vicon motion analysis system operating at 250 Hz. The three highest velocity trials for “good” and “short” length deliveries were analysed. Results showed that bowlers with a more front-on shoulder alignment at back-foot impact and when the upper arm was horizontal to the ground experienced a significantly greater elbow flexion – extension range when compared with those who had a more side-on orientation at the same point in the delivery action. Bowlers with greater shoulder counter-rotation also recorded higher elbow flexion and subsequently extension during the period from upper arm horizontal to ball release. Shoulder alignment and elbow angles were similar for “short” and “good” length deliveries. It was concluded that bowlers with a more front-on shoulder orientation at back-foot impact demonstrated a higher elbow extension from upper arm horizontal to ball release and are therefore more likely to infringe International Cricket Council elbow tolerance levels, compared with those who adopt a more side-on shoulder orientation at back-foot impact.  相似文献   

3.
Cricket bowling is traditionally thought to be a rigid-arm motion, allowing no elbow straightening during the delivery phase. Conversely, research has shown that a perfectly rigid arm through delivery is practically unattainable, which has led to rule changes over the past years. The current rule requires a bowler not to increase the elbow angle by more than 15°, thus requiring a measurement to confirm legality in “suspect” bowlers. The aims of this study were to evaluate whether the current rule is maintained over a range of bowlers and bowling styles, and to ascertain whether other kinematics measures may better differentiate between legal and suspect bowling actions. Eighty-three bowlers of varying pace were analysed using reflective markers and a high-speed (240 Hz) eight-camera motion analysis system in a laboratory. The change in elbow segment angle (minimum angle between the arm and forearm), the change in elbow extension angle with respect to the flexion–extension axis of a joint coordinate system, and the elbow extension angular velocity at ball release were measured. We found that bowlers generally bowled within a change in elbow extension angle of 15°. However, this limit was unable to differentiate groups of bowlers from those who were suspected of throwing in the past. Improved differentiation was attained using the elbow extension angular velocity at ball release. The elbow extension angular velocity at ball release may be conceptually more valid than the elbow extension angle in determining which bowlers use the velocity-contributing mechanisms of a throw. Also, a high value of elbow extension angular velocity at ball release may be related to the visual impression of throwing. Therefore, it is recommended that researchers and cricket legislators examine the feasibility of specifying a limit to the elbow extension angular velocity at ball release to determine bowling legality.  相似文献   

4.
The aim of this study was to examine the relationship between shoulder alignment and elbow angle during the delivery action of fast-medium bowlers. The elbow and upper trunk alignment were recorded for 13 high-performance bowlers (mean age 20 years) using a 12-camera Vicon motion analysis system operating at 250 Hz. The three highest velocity trials for "good" and "short" length deliveries were analysed. Results showed that bowlers with a more front-on shoulder alignment at back-foot impact and when the upper arm was horizontal to the ground experienced a significantly greater elbow flexion--extension range when compared with those who had a more side-on orientation at the same point in the delivery action. Bowlers with greater shoulder counter-rotation also recorded higher elbow flexion and subsequently extension during the period from upper arm horizontal to ball release. Shoulder alignment and elbow angles were similar for "short" and "good" length deliveries. It was concluded that bowlers with a more front-on shoulder orientation at back-foot impact demonstrated a higher elbow extension from upper arm horizontal to ball release and are therefore more likely to infringe International Cricket Council elbow tolerance levels, compared with those who adopt a more side-on shoulder orientation at back-foot impact.  相似文献   

5.
Abstract

In the sport of cricket the objective of the “no-ball” law is to allow no performance advantage through elbow extension during ball delivery. However, recently it has been shown that even bowlers with actions that are considered within the law show some elbow extension. The objective of this study was to investigate: [1] the effect of elbow orientation during anatomical landmark digitisation and [2] the choice of upper arm tracking cluster on the measurement of elbow angles during cricket bowling.

We compared the mean elbow angles for four different elbow postures; with the joint flexed at approximately 130°, 90°, in full extension and with the elbow flexed with the humerus internally rotated, and two upper arm clusters in two different situations: [1] during a controlled movement of pure flexion-extension and [2] during cricket bowling. The digitised postures of the anatomical landmarks where the elbow was extended and at 90° of flexion were more repeatable than the other two postures. The recommendation of this study when analysing cricket bowling is to digitise the humeral epicondyles with the joint flexed at 90°, or in full extension, and to relate their positions to an upper arm cluster fixed close to the elbow.  相似文献   

6.
Spin bowling plays a fundamental role within the game of cricket yet little is known about the initial ball kinematics in elite and pathway spin bowlers or their relationship to performance. Therefore, the purpose of this study was to record three-dimensional ball kinematics in a large and truly high level cohort of elite and pathway finger-spin (FS) and wrist-spin (WS) bowlers, identifying potential performance measures that can be subsequently used in future research. A 22-camera Vicon motion analysis system captured retro-reflective markers placed on the seam (static) and ball (dynamic) to quantify ball kinematics in 36 FS (12 elite and 24 pathway) and 20 WS (eight elite and 12 pathway) bowlers. Results indicated that FS bowlers delivered the ball with an increased axis of rotation elevation, while wrist-spin bowlers placed greater amounts of revolutions on the ball. It also highlighted that ball release (BR) velocity, revolutions and velocity/revolution index scores for both groups and seam stability for FS bowlers, and seam azimuth angle and spin axis elevation angle for WS bowlers, were discriminators of playing level. As such these variables could be used as indicators of performance (i.e. performance measures) in future research.  相似文献   

7.
Cricket bowling is traditionally thought to be a rigid-arm motion, allowing no elbow straightening during the delivery phase. Conversely, research has shown that a perfectly rigid arm through delivery is practically unattainable, which has led to rule changes over the past years. The current rule requires a bowler not to increase the elbow angle by more than 15 degrees, thus requiring a measurement to confirm legality in "suspect" bowlers. The aims of this study were to evaluate whether the current rule is maintained over a range of bowlers and bowling styles, and to ascertain whether other kinematics measures may better differentiate between legal and suspect bowling actions. Eighty-three bowlers of varying pace were analysed using reflective markers and a high-speed (240 Hz) eight-camera motion analysis system in a laboratory. The change in elbow segment angle (minimum angle between the arm and forearm), the change in elbow extension angle with respect to the flexion-extension axis of a joint coordinate system, and the elbow extension angular velocity at ball release were measured. We found that bowlers generally bowled within a change in elbow extension angle of 15.5 degrees. However, this limit was unable to differentiate groups of bowlers from those who were suspected of throwing in the past. Improved differentiation was attained using the elbow extension angular velocity at ball release. The elbow extension angular velocity at ball release may be conceptually more valid than the elbow extension angle in determining which bowlers use the velocity-contributing mechanisms of a throw. Also, a high value of elbow extension angular velocity at ball release may be related to the visual impression of throwing. Therefore, it is recommended that researchers and cricket legislators examine the feasibility of specifying a limit to the elbow extension angular velocity at ball release to determine bowling legality.  相似文献   

8.
This study sought to identify kinematic differences in finger-spin bowling actions required to generate variations in ball speed and spin between different playing groups. A 12-camera Vicon system recorded the off-spin bowling actions of six elite and 13 high-performance spin bowlers, and the “doosra” actions of four elite and two high-performance players. Forearm abduction and fixed elbow flexion in the bowling arm were higher for the elite players compared with the high-performance players. The elite bowlers when compared with the high-performance players delivered the off-break at a statistically significant higher velocity (75.1 and 67.1 km/hr respectively) and with a higher level of spin (26.7 and 22.2 rev/s respectively). Large effect sizes were seen between ball rotation, pelvic and shoulder alignment rotations in the transverse plane. Elbow extension was larger for elite bowlers over the period upper arm horizontal to ball release. Compared to the off-break, larger ranges of shoulder horizontal rotation, elbow and wrist extension were evident for the “doosra”. Furthermore, the “doosra” was bowled with a significantly longer stride length and lower ball release height. Although not significantly different, moderate to high effect size differences were recorded for pelvis rotation, elbow extension and elbow rotation ranges of motion.  相似文献   

9.
Spin bowling is generally coached using a standard technical framework, but this practice has not been based upon a comparative biomechanical analysis of leg-spin and off-spin bowling. This study analysed the three-dimensional (3D) kinematics of 23 off-spin and 20 leg-spin bowlers using a Cortex motion analysis system to identify how aspects of the respective techniques differed. A multivariate ANOVA found that certain data tended to validate some of the stated differences in the coaching literature. Off-spin bowlers had a significantly shorter stride length (p = 0.006) and spin rate (p = 0.001), but a greater release height than leg-spinners (p = 0.007). In addition, a number of other kinematic differences were identified that were not previously documented in coaching literature. These included a larger rear knee flexion (p = 0.007), faster approach speed (p < 0.001), and flexing elbow action during the arm acceleration compared with an extension action used by most of the off-spin bowlers. Off-spin and leg-spin bowlers also deviated from the standard coaching model for the shoulder alignment, front knee angle at release, and forearm mechanics. This study suggests that off-spin and leg-spin are distinct bowling techniques, supporting the development of two different coaching models in spin bowling.  相似文献   

10.
通过对2010年广州亚运会板球测试赛中国女队7名主力投手技术的高速影像解析,从球速、投球臂角速度、投球步落地位置和步长、落地时身体姿态、球出手瞬间关节角等方面分析比较中国女投手的各项投球技术。结果发现:不同类型投手之间技术特征差异性明显,快投手比旋转投手的落地到球出手时间短;好投手比差投手落地位置和空中姿态稳定性好。通过研究还发现部分投手存在球出手时膝关节弯曲、手臂弯曲等技术缺陷,以及前脚越过击球线等技术犯规错误,提醒在比赛中应引起注意。  相似文献   

11.
Upper-body dynamic and isometric maximum strength are essential components for success in Brazilian jiu-jitsu (BJJ). This study was aimed at analysing strength parameters in the elbow flexor and extensor muscles of BJJ practitioners. Participants (n = 28) performed maximum isometric contractions of elbow flexors and extensors to determine peak torque (PT), rate of force development (RFD), and the torque–angle (T–A) relationship at elbow angles of 45°, 60°, 75°, 90°, 105°, and 120°. Additionally, concentric and eccentric PTs were measured at 1.04 rad·s-1. Student t-test and ANOVA were performed using α = 0.05. Elbow flexors were stronger isometrically (P < 0.001, ES = 1.23) but weaker concentrically (P < 0.05, ES = 0.54) than extensor muscles, possibly because of the extensive grip disputes and pushing of opponents in BJJ. The T–A relationship had an inverted “U”-shape. Torque differences across elbow angles were moderate (ES = 0.62) for the extensor and large (ES = 0.92) for the flexor muscles. Isometric torque was greatest for elbow angles of 105° and 75° and smallest for 45° and 120° for extensor and flexor muscles, respectively. Elbow flexors had a greater RFD than extensors, regardless of elbow angle. The present study provides comprehensive results for elbow muscle strength in BJJ practitioners.  相似文献   

12.
Three‐dimensional (3‐D) high‐speed cinematography was used to record the penalty throw in water polo by six elite male (M) and six elite female (F) players. The direct linear transformation technique (DLT) was used in the 3‐D space reconstruction from 2‐D images recorded via laterally placed phase‐locked cameras operating at 200 Hz. Five of the twelve subjects lifted the ball from underneath at the start of the throw whilst the remaining subjects opted for a rotation lift. As the ball was brought behind the head the females used very little hip and shoulder rotation compared to the male players so that four of the six female subjects were square on to the target at the rear point. At the completion of the backswing the wrist was flexed to a similar angle (M‐162°; F‐158°); the elbow angle showed significantly greater flexion for females (85°) than males (107°).

During the forward swing, from rear point to release, the wrist joint of the female players flexed from a rear point angle of 158° to 148° at release. The wrist movement for male subjects was different from the females in that it flexed from 162° to 147°, 0.10 s prior to release and then extended to 159° at palmar release before again flexing to 156° at release. The amount of elbow extension during the forward swing was 48° for both groups; however, the females actually released the ball with the forearm vertical (89°) compared to the male forearm angle of 78°. Maximum angular velocity of the wrist and elbow occurred at release for 9 of the 12 subjects. Both the wrist and elbow joints (F‐148°; M‐156° at wrist and F‐126°; M‐148° at elbow) demonstrated greater flexion at release in female subjects, compared with males. Maximum linear endpoint velocities for the forearm and hand segments occurred at ball release resulting in mean ball velocities of 19.1 m s ‐1 and 14.7 m s‐ 1 for male and female subjects respectively.  相似文献   

13.
In order to get bounce and movement seam bowlers need to bowl the ball “into” the pitch. Standard deliveries by elite players are typically projected at around 7° below horizontal. In contrast, young players currently often need to release the ball almost horizontally in an effort to get the ball to bounce close enough to the batter. We anticipated that shortening the pitch could be a simple way to help young bowlers to release the ball at a better angle and with more consistency. Twenty county or best in club age group under 10 and under 11 seam bowlers were analysed bowling indoors on two different pitch lengths. They were found to project the ball on average 3.4° further below horizontal on a 16 yard pitch compared with a 19 yard pitch, while ball speed and position at release changed negligibly. Pitch length did not affect the consistency of the release parameters. The shorter pitch led to a ball release angle closer to that of elite bowlers without changing release speed, and this should enable players to achieve greater success and develop more variety in their bowling.  相似文献   

14.
The laws of bowling in cricket state 'a ball is fairly delivered in respect of the arm if, once the bowler's arm has reached the level of the shoulder in the delivery swing, the elbow joint is not straightened partially or completely from that point until the ball has left the hand'. Recently two prominent bowlers, under suspicion for transgressing this law, suggested that they are not 'throwing' but due to an elbow deformity are forced to bowl with a bent bowling arm. This study examined whether such bowlers can produce an additional contribution to wrist/ball release speed by internal rotation of the upper arm. The kinematics of a bowling arm were calculated using a simple two-link model (upper arm and forearm). Using reported internal rotation speeds of the upper arm from baseball and waterpolo, and bowling arm kinematics from cricket, the change in wrist speed was calculated as a function of effective arm length, and wrist distance from the internal rotation axis. A significant increase in wrist speed was noted. This suggests that bowlers who can maintain a fixed elbow flexion during delivery can produce distinctly greater wrist/ball speeds by using upper arm internal rotation.  相似文献   

15.
In this study a method for determining elbow extension and elbow abduction for a cricket bowling delivery was developed and assessed for Jenny Gunn who has hypermobility in both elbows and whose bowling action has been repeatedly queried by umpires. Bowling is a dynamic activity which is assessed visually in real time in a cricket match by an umpire. When the legality of a bowler's action is questioned by an umpire a quantitative analysis is undertaken using a marker based motion analysis system. This method of quantifying elbow extension should agree with a visual assessment of when the arm is "straight" and should minimise the effects of marker movement. A set of six markers on the bowling arm were used to calculate elbow angles. Differences of up to 1° for elbow extension and up to 2° for elbow abduction were found when angles calculated from the marker set for static straight arm trials were compared with measurements taken by a chartered sports physiotherapist. In addition comparison of elbow extension angles at ball release calculated from the markers during bowling trials with those measured from high speed video also showed good agreement with mean differences of 0°±2°.  相似文献   

16.
The purpose of this study was to measure the contributions of the motions of body segments and joints to racquet head speed during the tennis serve. Nine experienced male players were studied using three-dimensional film analysis. Upper arm twist orientations were calculated with two alternative methods using joint centres and skin-attached markers. The results showed that skin-attached markers could not be used to calculate accurate upper arm twist orientations due to skin movement, and that the use of joint centres produced errors of more than 20 degrees in the upper arm twist orientation when the computed elbow flexion/extension angle exceeded 135 degrees in the final 0.03 s before impact. When there were large errors in the upper arm twist orientation, it was impossible to obtain accurate data for shoulder or elbow joint rotations about any axis. Considering only the contributors that could be measured within our standards of acceptable error, the approximate sequential order of main contributors to racquet speed between maximum knee flexion and impact was: shoulder external rotation, wrist extension, twist rotation of the lower trunk, twist rotation of the upper trunk relative to the lower trunk, shoulder abduction, elbow extension, ulnar deviation rotation, a second twist rotation of the upper trunk relative to the lower trunk, and wrist flexion. The elbow extension and wrist flexion contributions were especially large. Forearm pronation made a brief negative contribution. Computed contributions of shoulder internal rotation, elbow extension and forearm pronation within the final 0.03 s before impact were questionable due to the large degree of elbow extension. Near impact, the combined contribution of shoulder flexion/extension and abduction/adduction rotations to racquet speed was negligible.  相似文献   

17.
Abstract

Lower back injuries, specifically lumbar stress fractures, account for the most lost playing time in professional cricket. The aims of this study were to quantify the proportion of lower trunk motion used during the delivery stride of fast bowling and to examine the relationship between the current fast bowling action classification system and potentially injurious kinematics of the lower trunk. Three-dimensional kinematic data were collected from 50 male professional fast bowlers during a standing active range of motion trial and three fast bowling trials. A high percentage of the fast bowlers used a mixed bowling action attributable to having shoulder counter-rotation greater than 30°. The greatest proportion of lower trunk extension (26%), contralateral side-flexion (129%), and ipsilateral rotation (79%) was used during the front foot contact phase of the fast bowling delivery stride. There was no significant difference in the proportions of available lower trunk extension, contralateral side-flexion, and ipsilateral rotation range of motion used during fast bowling by mixed and non-mixed action bowlers. Motion of the lower trunk, particularly side-flexion, during front foot contact, in addition to variables previously known to be related to back injury (e.g. shoulder counter-rotation), should be examined in future cross-sectional and prospective studies examining the fast bowling action and low back injury.  相似文献   

18.
Abstract

In this study, we examined the long-term reductions in maximal isometric force (MIF) caused by a protocol of repeated maximal isometric contractions at long muscle length. Furthermore, we wished to ascertain whether the reductions in MIF are dependent on muscle length — that is, are the reductions in MIF more pronounced when the muscle contracts at a short length. The MIF of the elbow flexors of seven young male volunteers was measured at five different elbow angles between 50° and 160°. On a separate day, the participants performed 50 maximal voluntary isometric muscle contractions with the elbow flexors at a lengthened positions that is, with the shoulder hyperextended at 45° and the elbow joint fixed at 140°. Following this exercise, the MIF at the five elbow angles, range of motion, muscle soreness and plasma creatine kinase activity were measured at 24 h intervals for 4 days. On day 1, the decline in MIF was higher at the more acute elbow angles of 50° (42±8%) and 70° (39±8%; both P<0.01) than at 90° (26±4%) and 140° (16±3%; both P<0.01). No significant reduction in MIF was evident at an elbow angle of 160°. Maximal isometric force at an elbow angle of 140° was fully restored on day 3, whereas at an angle of 50° it remained depressed for the 4 day observation period. Restoration of MIF was a function of the elbow angle, with force recovery being less at the smaller angles. The range of motion was decreased by 14±2° on day 1 (P<0.01) and did not return to baseline values by day 4. Muscle soreness ratings remained significantly elevated for the 4 day period. Serum creatine kinase peaked on day 1 (522±129 IU, P<0.01) and decreased thereafter. We conclude that the disproportionate decrease in MIF at the small elbow angles and the length-specific recovery in MIF after repeated maximal isometric contractions at long muscle length may be explained by the presence of overstretched sarcomeres that increased in series compliance of the muscle, therefore causing a rightward shift of the force-length relationship.  相似文献   

19.
ABSTRACT

Fast bowling is categorised into four action types: side-on, front-on, semi-open and mixed; however, little biomechanical comparison exists between action types in junior fast bowlers. This study investigated whether there are significant differences between action-type mechanics in junior fast bowlers. Three-dimensional kinematic and kinetic analyses were completed on 60 junior male fast bowlers bowling a five-over spell. Mixed-design factorial analyses of variance were used to test for differences between action-type groups across the phases of the bowling action. One kinetic difference was observed between groups, with a higher vertical ground reaction force loading rate during the front-foot contact phase in mixed and front-on compared to semi-open bowlers; no other significant group differences in joint loading occurred. Significant kinematic differences were observed between the front-on, semi-open and mixed action types during the front-foot contact phase for the elbow and trunk. Significant kinematic differences were also present for the ankle, T12-L1, elbow, trunk and pelvis during the back-foot phase. Overall, most differences in action types for junior fast bowlers occurred during the back-foot contact phase, particularly trunk rotation and T12-L1 joint angles/ranges of motion, where after similar movement patterns were utilized across groups during the front-foot contact phase.  相似文献   

20.
ABSTRACT

The aim of this study was to identify the key kinematic parameters which contribute to higher spin rates in elite finger spin bowling. Kinematic data were collected for twenty-three elite male finger spin bowlers with thirty kinematic parameters calculated for each delivery. Stepwise linear regression and Pearson product moment correlations were used to identify kinematic parameters linked to spin rate. Pelvis orientation at front foot contact (r = 0.674, p < 0.001) and ball release (r = 0.676, p < 0.001) were found to be the biggest predictors of spin rate, with both individually predicting 43% of the observed variance in spin rate. Other kinematic parameters correlated with spin rate included: shoulder orientation at ball release (r = 0.462, p = 0.027), and pelvis-shoulder separation angle at front foot contact (r = 0.521, p = 0.011). The bowlers with the highest spin rates adopted a mid-way pelvis orientation angle, a larger pelvis-shoulder separation angle and a shoulder orientation short of side-on at front foot contact. The segments then rotated sequentially, starting with the pelvis and finishing with the pronation of the forearm. This knowledge can be translated to coaches to provide a better understanding of finger spin bowling technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号