首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
ABSTRACT

The activPAL is a widely-used measure of sedentary time but few studies have evaluated its ability to estimate physical activity intensity. This study determined the accuracy of the algorithm used by the activPAL to predict metabolic equivalents (METs) from cadence and a curvilinear cadence-METs equation individualized for height. Thirty-six healthy adults (25 ± 6 years) completed a progressive walking protocol. Stepping cadence was video recorded and METs were determined via indirect calorimetry. Manually-counted cadence was input into the activPAL and curvilinear equations. The internal activPAL equation overpredicted METs at slower cadences (<120 steps/minute) but underpredicted METs at faster cadences (>120 step/minute) (proportional bias, p < .001). Conversely, the curvilinear equation exhibited neither fixed (p = .37) nor proportional bias (p = .07), and a lower absolute MET difference [0.87 ± 0.65 (range:0.0–3.2) vs. 0.56 ± 0.45 (range:0.0–2.7) METs]. The linear activPAL equation poorly estimates METs from stepping cadence but these inaccuracies may be lessened through the use of an individualized curvilinear equation.  相似文献   

2.
This study aimed to validate the Sedentary Sphere posture classification method from wrist-worn accelerometers in children. Twenty-seven 9–10-year-old children wore ActiGraph GT9X (AG) and GENEActiv (GA) accelerometers on both wrists, and activPAL on the thigh while completing prescribed activities: five sedentary activities, standing with a phone, walking (criterion for all 7: observation) and 10-min free-living play (criterion: activPAL). In an independent sample, 21 children wore AG and GA accelerometers on the non-dominant wrist and activPAL for two days of free-living. Per cent accuracy, pairwise 95% equivalence tests (±10% equivalence zone) and intra-class correlation coefficients (ICC) analyses were completed. Accuracy was similar, for prescribed activities irrespective of brand (non-dominant wrist: 77–78%; dominant wrist: 79%). Posture estimates were equivalent between wrists within brand (±6%, ICC > 0.81, lower 95% CI ≥ 0.75), between brands worn on the same wrist (±5%, ICC ≥ 0.84, lower 95% CI ≥ 0.80) and between brands worn on opposing wrists (±6%, ICC ≥ 0.78, lower 95% CI ≥ 0.72). Agreement with activPAL during free-living was 77%, but sedentary time was underestimated by 7% (GA) and 10% (AG). The Sedentary Sphere can be used to classify posture from wrist-worn AG and GA accelerometers for group-level estimates in children, but future work is needed to improve the algorithm for better individual-level results.  相似文献   

3.
This study explored the validity of ActiGraph-determined sedentary time (<50 cpm, <100 cpm, <150 cpm, <200 cpm, <250 cpm) compared with the activPAL in a free-living sample of bus drivers. Twenty-eight participants were recruited between November 2013 and February 2014. Participants wore an activPAL3 and ActiGraph GT3X+ concurrently for 7 days and completed a daily diary. Time spent sedentary during waking hours on workdays, non-workdays, during working-hours, and non-working hours were compared between instruments. During working hours, all ActiGraph cut-points significantly underestimated sedentary time (p < 0.05), whereas during non-working hours the <50 cpm cut-point demonstrated the closest agreement (ActiGraph sedentary time: 250 ± 75 minutes versus activPAL sedentary time: 236 ± 65 minutes). Receiver operating characteristic analyses revealed that on workdays and non-workdays the ActiGraph cut-points exhibited relatively low sensitivity (all <0.62) and specificity (all <0.49) values. The use of the ActiGraph to measure sedentary time in this understudied, highly sedentary and at risk occupational group is not recommended.  相似文献   

4.
Although high levels of sitting time are adversely related to health, it is unclear whether moving from sitting to standing provides a sufficient stimulus to elicit benefits upon markers of chronic low-grade inflammation in a population at high risk of type 2 diabetes (T2DM). Three hundred and seventy two participants (age = 66.8 ± 7.5years; body mass index (BMI) = 31.7 ± 5.5kg/m2; Male = 61%) were included. Sitting, standing and stepping was determined using the activPAL3TM device. Linear regression modelling employing an isotemporal substitution approach was used to quantify the association of theoretically substituting 60 minutes of sitting per day for standing or stepping on interleukin-6 (IL-6), C-reactive protein (CRP) and leptin. Reallocating 60 minutes of sitting time per day for standing was associated with a ?4% (95% CI ?7%, ?1%) reduction in IL-6 (p = 0.048). Reallocating 60 minutes of sitting time for light stepping was also associated with lower IL-6 levels (?28% (?46%, ?4%; p = 0.025)). Substituting sitting for moderate-to-vigorous (MVPA) stepping was associated with lower CRP (?41% (?75%, ?8%; p = 0.032)), leptin (?24% (?34%, ?12%; p ≤ 0.001)) and IL-6 (?16% (?28%, 10%; p = 0.036). Theoretically replacing 60 minutes of sitting per day with an equal amount of either standing or stepping yields beneficial associations upon markers of chronic-low grade inflammation.  相似文献   

5.
Activation of the hamstrings has been discussed as a measure for reducing strain on the ACL during jump landings in alpine skiing. The current study tested the hypothesis that hamstring and quadriceps activation can be voluntarily increased by the athlete. Specifically, two different instructions – to increase hamstring activation or to increase upper-leg co-contraction – were compared to normal landings. Eight members of the German national and junior national squad in freestyle skiing (age 19.6 ± 3.8 years; weight 66.1 ± 13.2 kg; height 172.2 ± 7.7 cm) performed 12 jump landings on a prepared run, 4 with no specific instruction, 4 with the instruction to generally activate the thigh muscles, and 4 with the instruction to specifically activate the hamstrings. Electromyographic (EMG) signals were recorded on the biceps femoris (BF), semitendinosus (ST), vastus lateralis (VL), rectus femoris (RF) and vastus medialis (VM). EMG activation levels were integrated over three landing phases and analysed with a repeated measures ANOVA. The instruction produced a significant main effect in ST (p = .026), VM (p = .032) and RF (p = .001). Contrary to previous research, the current study suggests that hamstring muscle activation levels can be voluntarily increased during jump landing, particularly in co-activation with its antagonists.  相似文献   

6.
The aim of this study was to examine relationships between activPAL?-determined sedentary behavior (SB) and physical activity (PA) with academic achievement. A total of 120 undergraduates (N = 57 female; 20.6 ± 2.3 years) participated in the study. Academic achievement was measured as the grade point average obtained from all completed courses. Participants wore on the right tight an activPAL? for 7 days to determine total sedentary time, total number of sedentary breaks, sedentary bouts, standing time, light and moderate-to-vigorous physical activity (MVPA). Separate multiple linear regression models were performed to examine associations between SB variables and academic achievement. Light PA, MVPA, total sedentary time, total standing time, or total number of sedentary breaks were not related to academic achievement. Independently of PA, the amount of time spent in sedentary bouts of 10-20min during weekdays was positively related to academic achievement. Given that college students spend the majority of their workday in environments that encourage prolonged sitting, these data suggest that interruptions in prolonged periods of sitting time every 10-20min via short breaks may optimize cognitive operations associated with academic performance.  相似文献   

7.
Purpose: There is uncertainty as to which knee angle during a squat jump (SJ) produces maximal jump performance. Importantly, understanding this information will aid in determining appropriate ratios for assessment and monitoring of the explosive characteristics of athletes. Method: This study compared SJ performance across different knee angles—90º, 100º, 110º, 120º, 130º, and a self-selected depth—for jump height and other kinetic characteristics. For comparison between SJ and an unconstrained dynamic movement, participants also performed a countermovement jump from a self-selected depth. Thirteen participants (Mage = 25.4 ± 3.5 years, Mheight = 1.8 ± 0.06 m, Mweight = 79.8 ± 9.5 kg) were recruited and tested for their SJ performance. Results: In the SJ, maximal jump height (35.4 ± 4.6 cm) was produced using a self-selected knee angle (98.7 ± 11.2°). Differences between 90°, 100°, and self-selected knee angles for jump height were trivial (ES ± 90% CL = 90°–100° 0.23 ± 0.12, 90°–SS ?0.04 ± 0.12, 100°–SS ?0.27 ± 0.20; 0.5–2.4 cm) and not statistically different. Differences between all other knee angles for jump height ranged from 3.8 ± 2.0 cm (mean ± 90% CL) to 16.6 ± 2.2 cm. A similar outcome to jump height was observed for velocity, force relative to body weight, and impulse for the assessed knee angles. Conclusions: For young physically active adult men, the use of a self-selected depth in the SJ results in optimal performance and has only a trivial difference to a constrained knee angle of either 90° or 100°.  相似文献   

8.
Abstract

We examined the influence of instructions on decision-making accuracy using video simulations of game-specific scenarios in Australian football. Skilled performers (average age of 23.4 ± 4.2 years) differing in experience (range 0 to 339 Australian Football League (AFL) matches) assumed the role of the key attacker and verbally indicated their kicking decision. Participants were randomly stratified into three groups: (1) LOOSE (n = 15) – instructed to “keep the ball away from the loose defender”; (2) TTF (n = 15) – instructed to “take the first option”; and (3) NI (control) (n = 16) – given no instructions. Gaze behaviour for a subset of participants (n = 20) was recorded. In the scenarios with an even number of attacking and defensive players, the decision-making accuracy of LOOSE was greater than TTF. This difference was most evident for lesser experienced performers, highlighting that lesser experienced performers are more affected by instructional foci than experienced performers. Gaze behaviour was not affected by instructional foci, but visual search rate was greater in scenarios of greater player number and complexity.  相似文献   

9.
The landing error scoring system (LESS) assesses the quality of a landing after a jump. The quality of the jump is usually evaluated using a three-dimensional (3-D) motion analysis system or a two-dimensional (2-D) video analysis visually rated by a clinician. However, both methods have disadvantages. The aim of this study was to examine the concurrent validity of a novel portable motion analysis system (‘PhysiMax System’) in assessing the LESS score by comparing it to video analysis. The study population included 48 healthy participants (28.45 ± 5.61 years), each performing the LESS test while two video cameras and the ‘PhysiMax’ simultaneously recorded the jump. The ‘Physimax’ system automatically evaluated the LESS. Subsequently, the examiners scored the test by viewing the video recordings, blinded to the ‘PhysiMax’ results. The mean LESS score, using the video recordings and the ‘PhysiMax’ was 4.77 (±2.29) and 5.15 (±2.58), respectively, (ICC = 0.80, 95% confidence intervals 0.65–0.87), mean absolute differences 1.13 (95% confidence intervals; 0.79–1.46). The results indicate a high consensus between the methods of measurement. The ‘Physimax’ system’s main advantages are portability, objective evaluation and immediate availability of results. The system can be used by athletic trainers and physiotherapists in the clinic and in the field for jumping assessment.  相似文献   

10.
As accelerometers are commonly used for 24-h measurements of daily activity, methods for separating waking from sleeping time are necessary for correct estimations of total daily activity levels accumulated during the waking period. Therefore, an algorithm to determine wake and bed times in 24-h accelerometry data was developed and the agreement of this algorithm with self-report was examined. One hundred seventy-seven participants (aged 40–75 years) of The Maastricht Study who completed a diary and who wore the activPAL3? 24 h/day, on average 6 consecutive days were included. Intraclass correlation coefficient (ICC) was calculated and the Bland–Altman method was used to examine associations between the self-reported and algorithm-calculated waking hours. Mean self-reported waking hours was 15.8 h/day, which was significantly correlated with the algorithm-calculated waking hours (15.8 h/day, ICC = 0.79, P = < 0.001). The Bland–Altman plot indicated good agreement in waking hours as the mean difference was 0.02 h (95% limits of agreement (LoA) = ?1.1 to 1.2 h). The median of the absolute difference was 15.6 min (Q1–Q3 = 7.6–33.2 min), and 71% of absolute differences was less than 30 min. The newly developed automated algorithm to determine wake and bed times was highly associated with self-reported times, and can therefore be used to identify waking time in 24-h accelerometry data in large-scale epidemiological studies.  相似文献   

11.
Our purpose was to use group and single-case methods to examine inter-individual variability in the context of factors related to landing injuries. We tested the load accommodation strategies model (An exploration of load accommodation strategies during walking with extremity-carried weights. Human Movement Science, 35, 17–29) using landing impulse, revealing pre-landing strategies following height and external load manipulations. Ten healthy volunteers (8 male, 2 female, 24.0 ± 1.4 years, 1.72 ± 0.06 m, 73.5 ± 8.7 kg) were analysed across 12 trials in each of three load conditions (100% body weight [BW], 110% BW, 120% BW) from two landing heights (30 cm, 60 cm). Landing impulse (BW ? s) was computed for each participant-condition-trial, using impulse ratios (unit-less; BW ? s/BW ? s) to evaluate load accommodation strategies between adjacent load conditions (110%/100%, 120%/110%) at each landing height. Load accommodation strategy classifications were based on 95% confidence intervals (CIs) containing mechanically predicted impulse ratios (1.10 and 1.09 for 110/100% BW and 120/110% BW, respectively; α = 0.05). Mean group impulse ratios matched and exceeded predicted impulse ratios. Single-case analyses revealed a range of individual landing strategies that might be overlooked during group analyses, possibly uncovering individuals at greater risk of injury during landing activities.  相似文献   

12.
To reduce resting blood pressure, a minimum isometric exercise training (IET) intensity has been suggested, but this is not known for short-term IET programmes. We therefore compared the effects of moderate- and low-intensity IET programmes on resting blood pressure. Forty normotensive participants (22.3 ± 3.4 years; 69.5 ± 15.5 kg; 170.2 ± 8.7 cm) were randomly assigned to groups of differing training intensities [20%EMGpeak (~23%MVC, maximum voluntary contraction, or 30%EMGpeak (~34%MVC)] or control group; 3 weeks of IET at 30%EMGpeak resulted in significant reductions in resting mean arterial pressure (e.g. ?3.9 ± 1.0 mmHg, < 0.001), whereas 20%EMGpeak did not (?2.3 ± 2.9 mmHg; > 0.05). Moreover, after pooling all female versus male participants, IET induced a 6.9-mmHg reduction in systolic blood pressure in female participants, but only a 1.5-mmHg reduction in systolic blood pressure in male participants, although the difference was not significant. An IET intensity between 20%EMGpeak and 30%EMGpeak is sufficient to elicit significant resting blood pressure reductions in a short-term training period (3 weeks). In addition, sexual dimorphism may exist in the magnitude of reductions, but further work is required to confirm this possibility, which could be important in understanding the mechanisms responsible.  相似文献   

13.
In this study, we examined the consequences of a global alteration in running technique on running kinematics and running economy in triathletes. Sixteen sub-elite triathletes were pre and post tested for running economy and running kinematics at 215 and 250?m?·?min?1. The members of the treatment group (n = 8) were exposed to 12 weeks of instruction in the “pose method” of running, while the members of the control group (n = 8) maintained their usual running technique. After the treatment period, the experimental group demonstrated a significant decrease in mean stride length (from 137.25?±?7.63?cm to 129.19?±?7.43?cm; P <?0.05), a post-treatment difference in vertical oscillation compared with the control group (6.92?±?1.00 vs. 8.44?±?1.00?cm; P <?0.05) and a mean increase in submaximal absolute oxygen cost (from 3.28?±?0.36?l?·?min?1 to 3.53?±?0.43?l?·?min?1; P <?0.01). The control group exhibited no significant changes in either running kinematics or oxygen cost. The global change in running mechanics associated with 12 weeks of instruction in the pose method resulted in a decrease in stride length, a reduced vertical oscillation in comparison with the control group and a decrease of running economy in triathletes.  相似文献   

14.
Abstract

The aim of this study was to examine how running experience affects leg stiffness (Kleg) and spring-mass characteristics during running stages associated with the onset of blood lactate accumulation (OBLA). Seven trained (66.9?±?4.8?kg; 182?±?4.0?cm; 23.1?±?3.1 years) and 13 untrained (78.5?±?7.6?kg; 182?±?3.0?cm; 20.3?±?1.5 years) runners completed an incremental treadmill run. Running velocity was increased by 1 km.h?1 every four minutes and blood lactate samples were taken at every stage, in addition to a 10?s video recording using ‘Runmatic’. Once 4?mmol?L?1 (OBLA; the second lactate turn point) had been reached one more stage was completed. Spring-mass characteristics across groups and at pre-OBLA, OBLA and post-OBLA were compared. The velocity at OBLA was higher for the trained runners compared to the untrained runners (18?±?0.7 vs 11?±?1.3 km.h?1, p?<?0.001). Kleg was similar between untrained and trained runners across each stage (15.8?±?0.3 vs 14.3?±?0.3 kN.m) and did not change between stages, yet spring-mass characteristics differed between groups. Vertical stiffness increased in the trained runners from pre-OBLA to post-OBLA (45.5?±?3.35–51.9?±?3.61 kN?1), but not in untrained runners (35.0?±?5.2–39.6?±?5.7 kN?1). Kleg was strongly related to Fpeak for trained runners only (r?=?0.79; untrained runners, r?=?0.34). Kleg was unaffected by physiological training status and was maintained across all OBLA stages. Trained runners appear to have optimised their spring-mass system in a homogenous manner, whilst less consistent spring-mass characteristics were observed in untrained runners.  相似文献   

15.
Talent identification (TID) and talent development (TDE) programmes in track sprint cycling use ergometer- and track-based tests to select junior athletes and assess their development. The purpose of this study was to assess which tests are best at monitoring TID and TDE. Ten male participants (16.2 ± 1.1 year; 178.5 ± 6.0 cm and 73.6 ± 7.6 kg) were selected into the national TID squad based on initial testing. These tests consisted of two 6-s maximal sprints on a custom-built ergometer and 4 maximal track-based tests (2 rolling and 2 standing starts) using 2 gear ratios. Magnitude-based inferences and correlation coefficients assessed changes following a 3-month TDE programme. Training elicited meaningful improvements (80–100% likely) in all ergometer parameters. The standing and rolling small gear, track-based effort times were likely and very likely (3.2 ± 2.4% and 3.3 ± 1.9%, respectively) improved by training. Stronger correlations between ergometer- and track-based measures were very likely following training. Ergometer-based testing provides a more sensitive tool than track-based testing to monitor changes in neuromuscular function during the early stages of TDE. However, track-based testing can indicate skill-based improvements in performance when interpreted with ergometer testing. In combination, these tests provide information on overall talent development.  相似文献   

16.
Abstract

The aim of this study was to examine the acute effects of prolonged static stretching (SS) on running economy. Ten male runners ([Vdot]O2peak 60.1 ± 7.3 ml · kg?1 · min?1) performed 10 min of treadmill running at 70%[Vdot]O2peak before and after SS and no stretching interventions. For the stretching intervention, each leg was stretched unilaterally for 40 s with each of eight different exercises and this was repeated three times. Respiratory gas exchange was measured throughout the running exercise with an automated gas analysis system. On a separate day, participants were tested for sit and reach range of motion, isometric strength and countermovement jump height before and after SS. The oxygen uptake, minute ventilation, energy expenditure, respiratory exchange ratio and heart rate responses to running were unaffected by the stretching intervention. This was despite a significant effect of SS on neuromuscular function (sit and reach range of motion, +2.7 ± 0.6 cm; isometric strength, ?5.6% ± 3.4%; countermovement jump height ?5.5% ± 3.4%; all P < 0.05). The results suggest that prolonged SS does not influence running economy despite changes in neuromuscular function.  相似文献   

17.
This study examined if a video decision-making task could discriminate talent-identified junior Australian football players from their non-talent-identified counterparts. Participants were recruited from the 2013 under 18 (U18) West Australian Football League competition and classified into two groups: talent-identified (State U18 Academy representatives; n = 25; 17.8 ± 0.5 years) and non-talent-identified (non-State U18 Academy selection; n = 25; 17.3 ± 0.6 years). Participants completed a video decision-making task consisting of 26 clips sourced from the Australian Football League game-day footage, recording responses on a sheet provided. A score of “1” was given for correct and “0” for incorrect responses, with the participants total score used as the criterion value. One-way analysis of variance tested the main effect of “status” on the task criterion, whilst a bootstrapped receiver operating characteristic (ROC) curve assessed the discriminant ability of the task. An area under the curve (AUC) of 1 (100%) represented perfect discrimination. Between-group differences were evident (P < 0.05) and the ROC curve was maximised with a score of 15.5/26 (60%) (AUC = 89.0%), correctly classifying 92% and 76% of the talent-identified and non-talent-identified participants, respectively. Future research should investigate the mechanisms leading to the superior decision-making observed in the talent-identified group.  相似文献   

18.
ABSTRACT

The objective of this study was to analyse the effect of the use of social networks in smartphones or playing video games on the passing decision-making performance in professional soccer athletes. Participants were 25 male professional soccer athletes (mean ± SD: age 23.4 ± 2.8 years). The participants performed three randomised conditions divided into three groups: control (CON), smartphone (SMA), and video game (VID). Before and after each experimental condition, the Stroop Task assessed the level of induced mental fatigue. Then, the athletes performed a simulated soccer match. A CANON® camera recorded the matches for further analysis on passing decision-making performance. A group effect was identified (< .01) with impairment on passing decision-making performance for the SMA (p = .01, ES = 0.5) and VID (p = .01, ES = 0.5) conditions. We concluded that the use of social networks on smartphones and/or playing video games right before official soccer matches might impair the passing decision-making performance in professional soccer athletes.  相似文献   

19.
Abstract

The catcher has the most demanding position in the games of baseball and softball with no regulations on how many throws they make during game. It was the purpose of this study to describe the kinematics and kinetics of the throwing motion in catchers when throwing down to second base. It was hypothesised that younger and older catchers would display significantly different throwing kinematics and kinetics. Thirty-eight baseball and softball catchers volunteered to participate. Twenty participants were considered younger (aged 9–14, 10.95 ± 1.76 years, 151.11 ± 15.64 cm, 47.94 ± 18.84 kg) and 18 were deemed the older group (aged 15–23, 18.11 ± 2.61 years, 170.91 ± 8.67 cm, 74.88 ± 10.74 kg). Participants received a pitch and completed five accurate throws to second base in full catching gear. The average ball speed of the older catchers was 21 ± 3.58 meters per second (47 ± 8.02 mph) while the younger catchers averaged 17.2 ± 4.0 meters per second (38.6 ± 8.96 mph). Older catchers had greater shoulder elevation at ball release and significantly greater shoulder external rotation at foot contact and shoulder maximum external rotation than younger catchers. It is clear that chronological age plays a role in the throwing mechanics observed in catchers throwing down to second base, however the effects of these differences are not fully understood (i.e., skeletal maturity, experience, strength).  相似文献   

20.
To characterise timing of movements and evaluate performance effects of technique alterations in V2 ski skating, 13 elite male cross-country skiers (age, 23 ± 2 years; stature, 182 ± 6 cm; body mass, 76 ± 8 kg; V2 V?O2max, 79.3 ± 4.4 mL · kg?1 · min?1) were tested four times during the preparation and competition phase on a roller ski treadmill. Each test consisted of submaximal intensities of exercise for determination of oxygen cost followed by one 1000-m performance test. Hip movement (from accelerometer data) and joint angles (2D video) were determined for high-intensity exercise (6° and 3.5 m · s?1; ~ 97–100% of V?O2peak). Each ski thrust consisted of three phases: gliding phase (18–50% of cycle time), poling phase (50–70% of cycle time), and kick phase (70–78% of cycle time). Flexion/extension of the hip initiated all phases, followed by the respective joints in legs and arms. Mixed-model analysis, adjusting for systematic time-point effects, identified that both reduced vertical hip acceleration and increased cycle time gave a small likely reduction in oxygen cost and 1000-m time. In conclusion, well-developed hip movement is a key characteristic of the V2 technique for elite-standard skiers’ long-term performance development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号