首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
命题 设ha为ABC的边BC上的高,D为边BC上的任一点,且r、r1、r2分别是ABC、ABD、ACD的内切圆半径;设r′、r′1、r′2分别为对着∠BAC、∠BAD、∠CAD并分别与BC、BD、DC相切的三角形的旁切圆半径.则rr′=r1r2 r′1r′2 r1r′1 r2r′2.图1证明:如图1,易知r=Sp,r′=Sp-a.其  相似文献   

2.
设D,E,F为ΔABC的边BC,CA,AB的周界中点,ΔABC,ΔAEF,ΔBFD,ΔCDE,ΔDEF的面积分别为Δ,ΔA,ΔB,Δc,Δ0,R和r分别为ΔABC的外接圆,内切圆半径,有献证明了:  相似文献   

3.
定理 设△ABC的BC边上的高为ha,D为BC内一点 ,△ABC、△ABD、△ACD的内切圆的半径分别为r、r1、r2 ,边BC、BD、DC外的旁切圆的半径分别为r′,r1′ ,r2 ′ ,则( 1 ) r1 r2r r1′ r2 ′r′ =2 ;( 2 ) 1r1-1r1′ 1r2-1r2 ′=4ha.证明 :如图 ,由文 [1 ]可得r=r1 r2 -2r1r2ha,①r′=r1′ r2 ′ 2r1′r2 ′ha,②rr1′r2 ′=r′r1r2 ,③r′×① r×② ,并应用③式 ,得2rr′ =(r1 r2 )r′ (r1′ r2 ′)r,两边除以rr′,即得 ( 1 )式 .r′×① r×② ,并应用③式 ,得(r1 r2 )r′ -(r1′ r2 ′)r =4r1r2 r′ha=4r1′r2 ′rha,两边除以r1…  相似文献   

4.
定理设ΔABC的内角A,B,C所对的旁切圆与三边所在直线相切的切点构成的三角形的面积依次为ΔA,ΔB,△C,且记BC=a,CA=b,AB=c,p=1/2(a+b+c),ΔABC的面积、外接圆、内切圆半径分别为△,R,r,则有  相似文献   

5.
郑重声明     
命题 设ha为△ABC的边BC上的高,D为边BC上的任一点,且r,r1,r2分别是△ABC,△ABD,△ACD的半内切圆半径;设r',r1',r2'分别为对着∠BAC,∠BAD,∠CAD并分别与BC,BD,DC相切的三角形的旁切圆半径。  相似文献   

6.
第34届IMO预选题2(加拿大提供): 设ΔABC的外接圆半径R=1,内切圆半径为r,它的垂足三角形A′B′C′的内切圆半径为ρ.求证:ρ≤1-(1/3)(1 r)~2。  相似文献   

7.
文[1]给出定理: 已知△ABC,BC边上的高为h,N为BC边内一点,△ABN与△ANC的内切圆半径分别为r1,r2,则△ABC的内切圆半径r满足r=r1+r2-(2r1r2)/(h).  相似文献   

8.
九年级数学练习题中有一道题为:如图,△ABC中,∠C=90.,AB=c,A C=b,BC=a,求其内切圆⊙O的半径r. 解法一:根据三角形面积求连结AO、BO、CO. ∵SΔAOC=1/2AC·r SΔBOC=1/2 BC·r S△AOB=1/2AB·r ∴SΔABC=1/2AC·r+1/2BC·r+1/2AB·r=1/2r(a+b+c) 又S△ABC=1/2BC·AC=1/2ab ∴1/2r( a+b+c)=1/2ab ∴r=ab/a+b+c 解法二:利用切线长性质求 作OD⊥AC,OE⊥BC,OF⊥AB,则四边形DCEO为正方形.  相似文献   

9.
定理 设ABCD为双圆四边形 ,R、r分别为外接、内切圆半径 ,r1、r2 分别为△ABC、△ADC的内切圆半径 ,则有R≥4r (r -r1) (r-r2 )r1 r2.①证明 :记AB =a ,BC =b ,CD =c,DA =d ,△ABC、△ADC的面积分别为Δ1、Δ2 ,四边形ABCD的面积为Δ ,半周长为 p ,则Δ1=12 r1(a b AC) ,Δ2 =12 r2 (c d AC) .由Δ =Δ1 Δ2 ,得2Δ =r1(a b) r2 (c d) AC(r1 r2 ) .由文 [1 ]知Δ =abcd ,R =14(ab cd) (ac bd) (ad bc)abcd12 ,∴AC =(ac bd) (ad bc)ab cd12 =4RΔab cd≤4RΔ2Δ =2R ,∴ 2Δ≤r1(a b) r2 (c d) 2R(r1 r2 )…  相似文献   

10.
定理设△ABC的BC边上的高为ha,D为BC边上的任一内点,且△ABC,△ABD,△ACD的内切圆半径分别为r,r1,r2;对着∠BAC,∠BAD,∠CAD并与BC边相切的这些三角形的旁切圆半径依次是r',r1',r2'.则有  相似文献   

11.
《中等数学》2000,(2):28-32
一、设a、b、c为ΔABC的三条边,a≤b≤c,R和r分别为ΔABC的外接圆半径和内切圆半径.令f=a b-2R-2r,试用角C的大小来判定f的符号.  相似文献   

12.
巴西国提供的第34届IMO预选题如下:设锐角△ABC的外接圆半径R=1,内切圆半径为r,它的垂足三角形A′B′C′的内切圆半径为r′,求证:r′≤1-(1+r2)(1)本文将逐步消弱命题的条件,得到两个更简,更一般的结果。为叙述方便,约定a、b、c及a′、b′、c′分别为△ABC及△A  相似文献   

13.
命题 设D、E分别是△ABC的边BC上与顶点B、C不重合的任意两点 ,△ABD、△ACE、△ABE、△ACD、△ADE的内切圆半径分别记作r1、r2 、r3、r4 、r5.则图 1r1r2=r3-r5r4 -r5.引理[1]  已知△ABC ,边BC上的高为h ,N为边BC上一点 ,△ABN与△ANC的内切圆半径分别为r1、r2 .则△ABC的内切圆半径r满足r=r1+r2 - 2r1r2h .命题证明 :如图 1 ,不妨设△ABC的内切圆半径为r,边BC上的高为h ,则由引理可得r=r1+r4 - 2r1r4 h ,①r=r2 +r3- 2r2 r3h ,②r3=r1+r5- 2r1r5h ,③r4 =r2 +r5- 2r2 r5h .④把④代入①、③代入② ,化简整理得2r1r4…  相似文献   

14.
一个有趣的平几公式   总被引:4,自引:1,他引:4  
本文先证明笔者最近发现的一个平几公式,即: 定理1 已知△ABC,BC边上的高为h,N为BC边内一点,△ABN与△ANC的内切圆半径分别为r_1、r_2,则△ABC的内切圆半径r满足 r=r_1 r_2-2r_1r_2/h_1 (1). 在证明定理1的时候需要用到一道已知的平几题,即 辅助命题 在△ABC中,内切圆⊙I与BC、CA、AB三边分别切于D、E、F,DIK为⊙I的直径,直线AK交BC边于C,则BG=CD.  相似文献   

15.
文 [1 ]给出了如下平面几何公式 :r =r1+r2 -2r1r2h .其中 ,P为△ABC的BC边上一点 ,h为BC边上的高 ,r ,r1,r2 分别为△ABC、△ABP和△ACP内切圆半径 .我们得到定理 设P为△ABC的边BC上一点 ,h为BC上的高 ,R ,R1,R2 分别为△ABC、△ABP、△ACP的外接圆半径 ,CA =b ,AB =c ,则R =(b +c) (bR1+cR2 )4h(R1+R2 ) . ( )证明 :由正弦定理 ,AP =2R1sinB =2R2 sinC ,设BC =a而sinB =b2R,sinC =c2R,因此R1+R2 =AP2 ( 1sinB+1sinC) =R(b +c)bc ·AP=R(b+c) sinAah ·AP=R(b+c)· AP2Rh=b +c2h (R1sinB +R2 sinC)=b +…  相似文献   

16.
定理 设D、E是△ABC的边BC上任意两 (内 )点 ,ha 为BC边上的高 ,r ,r1,… ,r5依次为△ABC、△ABD、△AEC、△ADE、△ABE和△ADC的内切圆半径 ,则( 1 ) r1r2=r3-r4 r3-r5;( 2 )r =r1+r2 +r3-1ha·(r1r3+r1r5+r2 r3+r2 r4 ) .引理[1]  D为△ABC的BC边上任一内点 ,h为BC边上的高 ,r、r1、r2 分别为△ABC、△ABD、△ADC的内切圆半径 ,则r =r1+r2 -2r1r2h .定理的证明 :由引理得①r =r1+r5-2r1r5ha,及关于r、r2 、r4 ,r4 、r1、r3,r5、r2 、r3的类似式子②、③、④ ,进而将④代入① ,③代入② ,及① =② ,整理 ,消去ha,整理…  相似文献   

17.
文[1]给出了一个涉及垂足三角形内切圆半径的恒等式:设△DEF是锐角△ABC的垂足三角形,且BC=a,CA=b,AB=c,p=(a b c)/2,△ABC的面积、外接圆、内切圆半径分别为?、R、r,若△AEF、△BDF、△CDE的内切圆半径依次为rA、rB、rC,则cot cot cotA2B2C2r A r B rC=?r??R.(1)本文给出(1)式  相似文献   

18.
题目对于任意一个△ABC,记其面积为S,周长为l,P、Q、T依次为△ABC内切圆在边BC、CA、AB上的切点.证明:(第23届韩国数学奥林匹克)证明如图1.设△ABC的外接圆、内切圆半径分别为R、r.易知,BC=2Rsin A,TQ=AOsin A  相似文献   

19.
熊斌 《中等数学》2008,(3):21-24
第一天 1.设锐角△ABC的三边长互不相等,O为其外心,点A′在线段AO的延长线上,使得∠BA′A=∠CA′A.过A′作A′A1⊥AC、A′A2⊥AB,垂足分别为A1、A2,作AHA⊥BC,垂足为HA.记HAA1A2的外接圆半径为RA,类似地可得RB、RC.求证:  相似文献   

20.
题目如图,D,E是ΔABC边BC上的两点,F是BA延长线上一点,∠DAE=∠CAF. (1)判断ΔABD的外接圆与△AEC的外接圆的位置关系,并证明你的结论; (2)若△ABD的外接圆半径是△AEC的外接圆半径的2倍,BC=6,AB=4,求BE的长.[第一段]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号