首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设一次方程f(x)=ax+b=0(a≠0)则:①在区间〔m,n〕内有根的充要条件为f(m)f(n)≤0。②在区间(-∞,m〕内有根的充要条件为af(m)≥0。③在区间〔n,+∞)内有根的充要条件为a·f(n)≤0。借助一次函数图象可以很快验证以上结论。下面请看这些结论的应用。  相似文献   

2.
题目 (2005年,辽宁,理科第22题)函数 y=f(x)在区间(0,+∞)内可导,导函数 f′(x)是减函数,且 f′(x)>0.设 x_0∈(0,+∞),y=kx+m 是曲线y=f(x)在点(x_0,f(x_0))处的切线的方程,并设函数g(x)=kx+m.(Ⅰ)用 x_0、f(x_0)、f′(x_0)表示m;(Ⅱ)证明:当 x_0∈(0,+∞)时,g(x)≥f(x);  相似文献   

3.
由函数f(x)的连续性及图象的性质,易得方程f(x)=0在区间(m,n)内有解的一个充分条件是f(m)·f(n)<0.这个充分条件在解答某些相关问题中有着无可比拟的作用,下面举例说明.  相似文献   

4.
题目 已知函数f(x)=ex-ln(x+m). (Ⅰ)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (Ⅱ)当m≤2时,证明f(x)>0. (Ⅰ)略. (Ⅱ)解法1 当m≤2,x∈(-m,+∞)时,恒有ln(x+m)≤ln(x+2),即只需证明m=2时成立,即ex-ln(x+2)>0即可. 即证明ee|-x-2 >0. 设g(x)=eex-x-2,g’(x)=ex+ex-1, 因为g″(x)=ex+ex(1+ex)>0,知g’(x)在(-2,+∞)上为单调递增函数.  相似文献   

5.
求不等式恒成立的参数的取值范围,是中学教学的难点之一,也是高考、数学竞赛的热点.下面就此问题的几种基本解法加以论述. 一、利用一次函数的性质 一次函数y=f(x)=ax+b在x∈[m,n]上恒大于零的充要条件是:{a>0,f(m)>0 或{a<0,f(n)>0或{f(m)>0,f(n)>0.(对于y=f(x) =ax+b恒小于零的条件亦可类似给出) 例1 若f(x)=(x-1)m2-6xm+x+1在区间[0,1]上恒为正值,求实数m的取值范围.  相似文献   

6.
用导数证明不等式是证不等式的一种重要方法,证明过程往往简捷、明快,特别是证明超越不等式,更是如鱼得水.证明的第一步要考虑如何构造函数,是证明的关键.若函数构造恰当,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式.本文谈谈在用导数证明不等式时,构造辅助函数的几种常用途径.途径一构造差函数直接作差,即构造差函数,是构造辅助函数的最主要方法.例1求证:不等式x-x22<1n(1+x)0,所以y=f(x)在(0,+∞)上单调递增,因为x>0,且f(x)在…  相似文献   

7.
含参数的一次函数、二次函数在某区间上根的问题,是初中学习中综合性较强的内容.此类题目的解答一是有其特殊的方法,另外如果不填容易出现错误.现举例如下:例1已知函数f(x)=3ax-2a+1在区间[-1,1]上存在x0,使f(x0)=0,求实数a的取值范围.分析易知f(x)的图象在区间[-1,1]上为一条线段,且这条线段与x轴有交点.应该满足f(-1)·f(1)≤0,即(-5a+1)(a+1)≤0,解得a≤-1或a≥51.例2已知方程x2+(m-2)x+2m-1=0有具只有一个实根在(0,1)内,求实数m的取值范围.分析令f(x)=x2+(m-2)x+2m-1=0,图象为开口向上的抛物线,要使f(x)=0有具只有一个根在区间(0,1)内,…  相似文献   

8.
在一元二次方程实根分布的有关问题中,有一类题型是“已知方程ax~2 bx c=0(a≠0)在区间(m,n)内有且只有一个实根,求参数的取值范围”,学生往往是只解f(m)·f(n)<0,其中f(x)=ax~2 bx c(a≠0)。其实这里有一个不易觉察的错误,这是由于“f(m)·f(n)<0”是“方程ax~2 bx c=0(a≠0)在区间(m,n)内有且只有一个实根”的充分不必要条件,因而由  相似文献   

9.
为了把代数方程的重根概念推广到超越方程,引入如下的定义。定义:如果x_0是方程f(x)=0的根,且是f′(x)=0的根,但f″(x_0)≠0,则x_0称为方程的二重根.这里f(x)可表示超越函数. 按此定义,我们可得方程  相似文献   

10.
一、选择题(每小题6分,共36分) 1.已知函数h(x)与g(x)都是定义在区间(0,+∞)上的增函数,并设函数f(x)=h(x)g(x).则函数f(x)在区间(0,+∞)上( ).  相似文献   

11.
错在哪里     
<正>题目已知函数f(x)=x3-6bx3-6bx2+b在区间(0,1)内存在平行于x轴的切线,则实数b的取值范围为_____.解因为切线平行于x轴,所以切线的斜率为0.因为f(x)=x2+b在区间(0,1)内存在平行于x轴的切线,则实数b的取值范围为_____.解因为切线平行于x轴,所以切线的斜率为0.因为f(x)=x3-6bx3-6bx2+b,所以f′(x)=3x2+b,所以f′(x)=3x2-12bx.由题意知f′(x)=0在(0,1)内有解,所以f′(x)=3x2-12bx.由题意知f′(x)=0在(0,1)内有解,所以f′(x)=3x2-12bx=0,得x=0或x=4b,所  相似文献   

12.
文献[1]~[3]对二次函数f(x)=x2+bx+c的迭代进行了探讨,其中文献[2]、[3]得到了关于方程f2(x)=x在特殊情形下根的一个结论:设f(x)=x2+bx+c,记Δ0=(b-1)2-4c,若方程f(x)=x有2个不等实根,则1)当0<Δ0<4时,f2(x)=x只有2个不等实根;2)当Δ0>4时,f2(x)=x有4个不等实根.方程f2(x)=x中的f2(x)为f2(x)=f(f(x)),一般地有fn(x)=f(fn-1(x)).本文将考虑一般二次函数f(x)=ax2+bx+c(其中a≠0且a,b,c∈R)的迭代,用初等方法给出  相似文献   

13.
题目:已知a,b是实数,函数f(x)=x2+ax,g(x)=x2+bx,f’(x)和g’(x)是f(x),g’(x)的导函数,若f’(x)g’(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致(1)设a>0,若函数f(x)和g(x)在区间[-1,+∞)上单调性一致,求实数b的取值范围;(2)设a<0,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a-b|的最大值.  相似文献   

14.
<正>引例1(2013年安徽卷)若函数f(x)=x3+ax2+bx+c有极值点x1、x2,且f(x1)=x1,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数是()A.3 B.4 C.5 D.6引例2(2014年全国高中数学联赛(江苏赛区)初赛)已知函数f(x)=lg|x-103|.若关于x的方程f2(x)-5f(x)-6=0的实根之和为m,则f(m)的值是.  相似文献   

15.
由代数基本定理知:“n次复系数方程一定有n个根”.与之对应的一个定理:“如果一个n次有理整函数有多于n个的值使它为零,那么各项系数必定都是零”.它的证明如下,设f(x)表示这个函数,且为f(x)=p0xn+p1xn-1+p2xn-2+…+pn,并设x为a1,a2,…,an时,f(x)为零,则f(x)=p0(x-a1)(x-a2)…(x-an),令c是使f(x)为零的而不同于ai(i=1,2,…,n)的值,由于f(c)=0,而有p0(c-a1)(c-a2)…(c-an)=0.但是,由假设c不等于ai(i=1,2,…,n),所以,c-ai≠0(i=1,2,…,n).因而,p0=0.于是原函数变为g(x)=p1xn-1+p2xn-2+…+pn.根据归纳假设,用同样的方法可以求得g(x)=p1(x-a1)(x…  相似文献   

16.
方程af(x)+f(x)~(1/b)=c,一般用代换法来解。但当a、b、c为整数,a>0时,用观察法来解,显得更为简便,下面介绍这种方法。定理:如果存在平方数m≥0,使 c=am+m~(1/b)则方程af(x)+f(x)~(1/b)=c ①与方程(f(x)-m~(1/2))(f(x)+b/a+m~(1/2)=0同解②其中f(x)为x的解析式。证明:设a是方程①的解,则 af(a)+f(a)~(1/b)=am+m~(1/b)∵ f(x),m≥0,  相似文献   

17.
错在哪里     
1.已知函数f(x)=ax+1/x+2在(-2,+∞)内单调递减,求实数a的取值范围. 错解:f(x)=2a-1/(x+2)2由题意得f'(x)≤0在(-2,+∞)内恒成立,即2a-1/(x+2)2≤0在(-2,+∞)内恒成立,故a≤1/2.  相似文献   

18.
例1已知函数f(x)=|x|/(x+2).(1)判断函数f(x)在区间(0,+∞)上的单调性,并加以证明;(2)如果关于x的方程f(x)=kx~2有四个不同的实数解,求实数k的取值范围。分析若用分类讨论法求解第(2)问,  相似文献   

19.
例1(2012年清华保送生)f(x)=lnex-1/x,a1=1,an+1=f(an). (1)求证:exx-ex+1≥0恒成立; (2)试求f(x)的单调区间; (3)求证:{an}为递减数列,且an>0恒成立. 解析:(1)令g(x)=exx-ex+1,则g'(x)=exx. 当x<0时,g '(x)<0;当x>0时,g'(x)>0. 所以g(x)在(-∞,0)内为减函数,在(0,+∞)内为增函数.所以g(x)≥g(0)=0,即exx-ex+1≥0恒成立.  相似文献   

20.
<正>抽象函数因题目中没有具体的解析式,解题难度很大。如果能利用题目的条件,联想学过的函数类型,构造出相应的函数模型,则可快速解答这类题目。一、根据定义域构造函数(1)定义域为(-∞,+∞)时,构造f(x)=kx+b(k≠0)或f(x)=ax~3+bx~2+cx+d(a≠0)。(2)定义域为(m,+∞)时,构造f(x)=log_a(x-m)。(3)定义域为(-∞,m)时,构造f(x)=  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号