首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一、复习要点:(1)弄清垂线、斜线、四种命题、外心、内心、垂心、重心、外切、内切等基本概念。(2)要围绕公理和定理进行复习,如三角形中的公理、定理,各种特殊四边形的性质和定理,相似三角形的有关定理,在圆中,弧弦角的定理,切线割线的定理,与多边形的关系定理。(3)掌握计算公式,如三角形而积 S=1/2ah_a=1/2absinC,正、长方形面积,平行四边形面积 S=ah_a=absinα(α为 a·b夹角),菱形面积 S=aha=a~2sinα=1/2L_1L_2  相似文献   

2.
5.9正弦定理、余弦定理教材细解1.正弦定理(1)正弦定理:在△ABC中,a、b、c分别为角A、B、C的对边,R为△ABC的外接圆的半径,则有asinA=sibnB=sincC=2R.(2)正弦定理的证明:①向量法:先选定与其中  相似文献   

3.
圆幂定理包含相交弦定理、割线定理、切割线定理 .这些定理是“圆”一章的重点内容 .应用圆幂定理进行计算的中考几何题十分常见 ,现分类举例如下 .一、相交弦定理的应用例 1 如图 1 ,⊙O1和⊙O2 内切于点P ,⊙O2 的弦AB经过⊙O1的圆心O1,交⊙O1于C、D .若AC∶CD∶DB =3∶4∶2 ,则⊙O1与⊙O2的直径之比为    .( 1 998年江苏省南京市中考题 )分析 为应用相交弦定理 ,过切点P作⊙O2 的直径PQ ,则O1、O2 必在直径PQ上 .设AC =3a ,则CO1=O1D =O1P =DB =2a .∵ O1P·O1Q =O1A·O1B ,∴  2…  相似文献   

4.
文 [1]的定理 1,2分别为 :定理 1 设 a≠ - 1,b≠ - 1,则 11+ a+11+ b=1成立的充要条件是 ab=1.定理 2 设 a≠ - 1,b≠ - 1,则 a1+ a+b1+ b=1成立的充要条件是 ab=1.我们可将定理 1,2推广为 :定理 3 设 xy≠ 0 ,则 ax+ by=1成立的充要条件是 (x- a) (y- b) =ab(证明略 ) .把定理 3中的 a,b,x,y分别换成 1,1,1+ 1+ b,则得定理 1;把定理 3中的 x,y分别换成 1+ a,1+ b,则得定理 2 .用定理 3解某些最值题或证明某些不等式是比较方便的 ,下面举例说明 .1 求最值例 1 已知 x,y∈ (0 ,+∞ )且 2 x+ y=4,求 1x+ 1y的最小值 .(文 [2 ]例 2 )解 …  相似文献   

5.
正弦定理、余弦定理都是解三角形的重要工具,但它们的作用有所不同,若能综合运用这2个定理,则能灵活解题,现举例说明.1求三角形的内角例1△ABC中,sin2A=sin2B sinB.sinC sin2C,求A的大小.解由正弦定理,得sinA=2aR,sinB=2bR,sinC=2cR,代入正知等式有a24R2=4bR22 4bRc2 4cR22,而a  相似文献   

6.
若一元二次方程ax^2 bx c=0(a0)的两人根为x1,x2,则x1 x2=-b/a,x1x2=c/a。这个结论在数学中称为韦达定理,在物理中有很多方程为一元二次方程,有时应用韦达定理解题很简捷,下面略举几例说明。  相似文献   

7.
文[1]、[2]中分别证明了有关正多边形充要条件的两个定理。 定理1 如果凸n边形A_1A_2…A_n满足: 1°A_1A_2=A_2A_3=…=A_nA_1; 2°∠A_1≥∠A_2≥…≥∠A_n那么A_1A_2…A_n是正n边形。 定理2 如果凸n边形A_1A_2…A_n满足: 1°∠A_1=∠A_2=…=∠A_n; 2°A_1A_2≤A_2A_3≤…≤A_nA_1。那么A_1A_2…A_n是正n边形。  相似文献   

8.
定理设一元二次方程x2 px q=0有两个不等的实根x1、x2,且x10, 从而(x1-k)(x2-k)<0. 即k2 pk q<0. 此定理的逆定理也成立(证明略). 由定理的逆定理可知,对于一个常数k,如果满足k2 pk q<0,则不仅说明了一元二次方程x2  相似文献   

9.
定理经过正n边形(n>3)每一顶点的对角线长L_i=2Rsin i·180°/n,i=1,2,3,…,n-1(包括连结相邻顶点的线段)。证明:正n边形A_1A_2A_3…A_n如图1所示,设半径为R,L_1=A_1A_2=2R sin180°/n; △A_1A_2A_3中,由正弦定理得A_1A_3/sinA_2  相似文献   

10.
定理是解题的重要工具,本文介绍一个定理及其应用。定理在△ABC中,有 sin~2C=sin~2A+sin~2B—2sinAsinBcosC。证明在△ABC中,由余弦定理: c~2=a~2+b~2-2abcosC及正弦定理:a=2RsinA,b=2RsinB,c=2RsinC,可得 sin~2C=sin~2A+sin~2B-2sinAsinBcosC。  相似文献   

11.
<正>如果一元二次方程ax2+bx+c=0(a≠0)有两个实数根x_1和x_2,那么x_1+x_2=-b/a,x_1x_2=c/a,这就是著名的韦达定理.现行义务教育初中数学教材中的证法是利用一元二次方程ax2+bx+c=0(a≠0)有两个实数根x_1和x_2,那么x_1+x_2=-b/a,x_1x_2=c/a,这就是著名的韦达定理.现行义务教育初中数学教材中的证法是利用一元二次方程ax2+bx+c=0的求根公式先求出它的两个根,然后分别计算这两根之和与两根之积.笔者在文[1]中不借助于一元二次方程的求根公式给出了韦达定理的三种代数证法,本文再给出韦达定理  相似文献   

12.
勾股定理是初中数学中重要的定理之一,应用十分广泛.学习勾股定理时,一定要正确理解定理的内容,记清定理成立的条件,区别定理与逆定理,只有这样,才能在解题时恰当地运用.1.已知图形中有直角时,可考虑选用勾股定理例1如图1,在矩形纸片ABCD中,AB=AB CFDEO图1AB PDC图2AB CQP图36,BC=8,将纸片折叠,使得A、C两点重合.求折痕EF的长.解析:连结AC交EF于点O,连结CF.因为A、C两点关于折痕EF对称,所以折痕EF是线段AC的垂直平分线,从而CF=AF.在矩形ABCD中,因为AB=6,BC=8,所以AC=$AB2 BC2=10.所以OA=OC=5.在Rt△CDF中,由勾…  相似文献   

13.
对于问题“若a,b为正数 ,并且a b =1 ,则有不等式a2 1 b2 1≥ 5 .”文 [1 ]给出了较为复杂的代数证法 .之后 ,文 [2 ]给出了简明的几何证法 ,并进行了如下推广 :定理 1 若a1 ,a2 ,… ,an ∈R ,且∑ni=1ai =1 ,则 ∑ni =1a2i 1≥n2 1 .文 [2 ]对定理 1仍采用了几何证法 现将定理 1再作推广 ,可得 :定理 2 若a1 ,a2 ,… ,an 及b1 ,b2 ,… ,bn 是任意实数 ,则∑ni =1a2i b2i ≥ (∑ni =1ai) 2 (∑ni =1bi) 2 .证明 设复数zk =ak bki,其中k =1 ,2 ,… ,n.因为 |z1 | |z2 |…  相似文献   

14.
若a_1、b_1、a_2、b_2成比例,即a_1/b_1=a_2/b_2,则它具有下列性质: (1)a_1/a_2=b_1/b_2,b_2/b_1=a_1/a_2 (更比定理) (2)b_1/a_1=b_2/a_2 (反比定理) (3)a_1/(a_1+b_1)=a_2/(a_2+b_2),(a_1+b_1)/b_1=(a_2+b_2)/b_2 (合比定理) (4)a_1/(a_1-b_1)=a_2/(a_2-b_2),(a_1-b_1)/b_1=(a_2-b_2)/b_2 (分比定理)  相似文献   

15.
正弦定理和余弦定理是解三角形的两个重要定理 ,也是竞赛中重点考查的内容之一 .本文浅谈由这两个定理联袂推出的结论及在竞赛中的应用 .在△ABC中 ,若 a,b,c分别是角 A,B,C的对边 ,由正弦定理可得 a=2 Rsin A,b=2 Rsin B,c=2 Rsin C(R为△ ABC的外接圆半径 ) ,代入余弦定理中 ,可得到它们的联袂结论 :sin2 A=sin2 B sin2 C- 2 sin Bsin Ccos A;sin2 B=sin2 A sin2 C- 2 sin Asin Ccos B;sin2 C=sin2 A sin2 B- 2 sin Asin Bcos C.同时还可以证明当 A B C=kπ(k为奇数 ) ,以上结论也成立 .1 给角求值例 1 求 cos2 73…  相似文献   

16.
文[1]给出了如下定理及证明: 定理1设ai∈R ,n∑I=1ai=s,k∈N,k≥2,则有n∑I=1 aki/s-ai≥sk-1/(n-1)·nk-2.(1)其中等号当且仅当a1=a2=…=an时成立.  相似文献   

17.
一、韦达定理的意义一元二次方程ax~2+bx+c=0的根x_1、x_2与系数a、b、c有如下关系:x_1+x_2=-b/a,x_1x_2=c/a. 这是法国数学家韦达于1559年首先给出的,因而称为“韦达定理”.特别地,对于方程x~2+px+q=0而言,它的两根x_1、x_2满足x_1+x_2=-p,且x_1x_2=q. 顺便提一下韦达定理的逆定理:  相似文献   

18.
一、两个定理及其推论 定理1:过点(k,0)作一条直线和抛物线y2=2px(p>0)交于A(x1,y1)、B(x2,y2)两点,则x1x2=k2,y1y2=-2pk.  相似文献   

19.
定义了Clifford分析中一类三正则函数(即3f=0的解f(x),算子=e11+e22+…+enn,i=xi,i=1,2,…,n),讨论了它的表示定理,Cauchy型积分,Plemelj公式,延拓定理等性质.  相似文献   

20.
韦达定理是代数中的一个重要定理,它在解析几何中也有广泛的应用。在解某些解析几何题时,如果注意运用韦达定理,有时能使运算简便。如以下几例。 一、利用x_1 x_2=-b/a 例1.点P(2,2)是椭圆x~2 8y~2 4x-24y 6=0的一条弦的中点,求这条弦所在的直线方程。 解:设所求的直线方程为y-2=k(x-2),它与椭圆的方程x~2 8y~2 4x-24y 6=0组成方程组,消去y得:(1 8k~2)x~2-(32k~2-8k-4)x 32k~2-16k-10=0,设它的两个根是x_1和x_2,则有x_1 x_2=4,根据韦达定理有  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号