首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several scientists, scientific institutions, and philosophers have argued that science is committed to Methodological Naturalism (MN), the view that science, by virtue of its methods, is limited to studying ‘natural’ phenomena and cannot consider or evaluate hypotheses that refer to supernatural entities. While they may in fact exist, gods, ghosts, spirits, and extrasensory or psi phenomena are inherently outside the domain of scientific investigation. Recently, Mahner (Sci Educ 3:357–371, 2012) has taken this position one step further, proposing the more radical view that science presupposes an a priori commitment not just to MN, but also to ontological naturalism (ON), the metaphysical thesis that supernatural entities and phenomena do not exist. Here, we argue that science presupposes neither MN nor ON and that science can indeed investigate supernatural hypotheses via standard methodological approaches used to evaluate any ‘non-supernatural’ claim. Science, at least ideally, is committed to the pursuit of truth about the nature of reality, whatever it may be, and hence cannot exclude the existence of the supernatural a priori, be it on methodological or metaphysical grounds, without artificially limiting its scope and power. Hypotheses referring to the supernatural or paranormal should be rejected not because they violate alleged a priori methodological or metaphysical presuppositions of the scientific enterprise, but rather because they fail to satisfy basic explanatory criteria, such as explanatory power and parsimony, which are routinely considered when evaluating claims in science and everyday life. Implications of our view for science education are discussed.  相似文献   

2.
Evolutionary developmental biology (Evo-devo) is a vibrant area of contemporary life science that should be (and is) increasingly incorporated into teaching curricula. Although the inclusion of this content is important for biological pedagogy at multiple levels of instruction, there are also philosophical lessons that can be drawn from the scientific practices found in Evo-devo. One feature of particular significance is the interdisciplinary nature of Evo-devo investigations and their resulting explanations. Instead of a single disciplinary approach being the most explanatory or fundamental, different methodologies from biological disciplines must be synthesized to generate empirically adequate explanations. Thus, Evo-devo points toward a non-reductionist epistemology in biology. I review three areas where these synthetic efforts become manifest as a result of Evo-devo’s practices (form versus function reasoning styles; problem-structured investigations; idealizations related to studying model organisms), and then sketch some possible applications to teaching biology. These philosophical considerations provide resources for life science educators to address (and challenge) key aspects of the National Science Education Standards and Benchmarks for Scientific Literacy.  相似文献   

3.
4.
In order to understand how prospective teachers develop knowledge for teaching, researchers must identify the types of knowledge that are integral to effective science teaching. This case study investigated how 4 prospective secondary biology teachers’ science teaching orientations, knowledge of science learners, and knowledge of instructional sequence, developed during a post-baccalaureate teacher education program. Data sources included a lesson planning task and two interview-observation cycles during the participants’ year-long internship. Over the course of a year, the participants’ science teaching orientations were based primarily on their K-16 learning experiences, and were robust and highly resistant to change. The prospective teachers became more aware of student learning difficulties, and therefore, developed more elaborated knowledge of the requirements of learning. They consistently sequenced instruction in ways that gave priority to transmitting information to students. Prospective teachers’ development of knowledge of student understanding of science and instructional sequence were congruent with their science teaching orientations. Implications are given for teacher education and future research.  相似文献   

5.
ABSTRACT

In order to create conditions for students’ meaningful and rigorous intellectual engagement in science classrooms, it is critically important to help science teachers learn which strategies and approaches can be used best to develop students’ scientific literacy. Better understanding how science teachers’ instructional practices relate to student achievement can provide teachers with beneficial information about how to best engage their students in meaningful science learning. To address this need, this study examined the instructional practices that 99 secondary biology teachers used in their classrooms and employed regression to determine which instructional practices are predictive of students’ science achievement. Results revealed that the secondary science teachers who had well-managed classroom environments and who provided opportunities for their students to engage in student-directed investigation-related experiences were more likely to have increased student outcomes, as determined by teachers’ value-added measures. These findings suggest that attending to both generic and subject-specific aspects of science teachers’ instructional practice is important for understanding the underlying mechanisms that result in more effective science instruction in secondary classrooms. Implications about the use of these observational measures within teacher evaluation systems are discussed.  相似文献   

6.
The purpose of this study is to interpret and qualitatively characterise the content in some research articles and evaluate cases of possible difference in meanings of the gene concept used. Using a reformulation of Hirst’s criteria of forms of knowledge, articles from five different sub-disciplines in biology (transmission genetic, molecular biology, genomics, developmental biology and population genetics) were characterised according to knowledge project, methods used and conceptual contexts. Depending on knowledge project, the gene may be used as a location of recombination, a target of regulatory proteins, a carrier of regulatory sequences, a cause in organ formation or a basis for a genetic map. Methods used range from catching wild birds and dissecting beetle larvae to growing yeast cells in 94 small wells as well as mapping of recombinants, doing statistical calculations, immunoblotting analysis of protein levels, analysis of gene expression with PCR, immunostaining of embryos and automated constructions of multi-locus linkage maps. The succeeding conceptual contexts focused around concepts as meiosis and chromosome, DNA and regulation, cell fitness and production, development and organ formation, conservation and evolution. These contextual differences lead to certain content leaps in relation to different conceptual schemes. The analysis of the various uses of the gene concept shows how differences in methodologies and questions entail a concept that escapes single definitions and “drift around” in meanings. These findings make it important to ask how science might use concepts as tools of specific inquiries and to discuss possible consequences for biology education.  相似文献   

7.
Although historical changes in scientific ideas sometimes display striking similarities with students’ conceptual progressions, some scholars have cautioned that such similarities lack meaningful commonalities. In the history of evolution, while Darwin and his contemporaries often used natural selection to explain evolutionary trait gain or increase, they struggled to use it to convincingly account for cases of trait loss or decrease. This study examines Darwin’s evolutionary writings about trait gain and loss in the Origin of Species (On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. D. Appleton, New York, 1859) and compares them to written evolutionary explanations for trait gain and loss in a large (n > 500), cross-cultural and cross-sectional sample (novices and experts from the USA and Korea). Findings indicate that significantly more students and experts applied natural selection to cases of trait gain, but like Darwin and his contemporaries, they more often applied ‘use and disuse’ and ‘inheritance of acquired characteristics’ to episodes of trait loss. Although the parallelism between Darwin’s difficulties and students’ struggles with trait loss are striking, significant differences also characterize explanatory model structure. Overall, however, students and scientists struggles to explain trait loss—which is a very common phenomenon in the history of life—appear to transcend time, place, and level of biological expertise. The significance of these findings for evolution education are discussed; in particular, the situated nature of biological reasoning, and the important role that the history of science can play in understanding cognitive constraints on science learning.  相似文献   

8.
Agnotology has been defined in a variety of ways including “the study of ignorance and its cultural production” and “the study of how and why ignorance or misunderstanding exists.” More recently, however, it has been posited that agnotology should be used in the teaching of climate change science. But rather than use agnotology to enhance an understanding of the complicated nature of the complex Earth’s climate, the particular aim is to dispel alternative viewpoints to the so-called consensus science. One-sided presentations of controversial topics have little place in the classroom as they serve only to stifle debate and do not further knowledge and enhance critical thinking. Students must understand not just what is known and why it is known to be true but also what remains unknown and where the limitations on scientific understanding lie. Fact recitation coupled with demonizing any position or person who disagrees with a singularly-derived conclusion has no place in education. Instead, all sides must be covered in highly debatable and important topics such as climate change, because authoritarian science never will have all the answers to such complex problems.  相似文献   

9.
The study investigated the predictive value of robust and specific personality traits in adolescents (M age?=?14.7 years), in explaining their academic achievement at the end of basic compulsory schooling. Personality data were obtained through self, maternal, and peer reports using the Inventory of Child/Adolescent Individual Differences. Adolescent gender and maternal education predicted 36, 26, 19, and 26 % of the variance in the final grades in Slovene, English, and mathematics and the overall GPA, respectively. Personality ratings by each of the three groups of informants substantially improved the prediction of students’ academic achievements, over and beyond gender and maternal education. The robust trait scores contributed to significant increments in the variance explained, across the academic achievement indicators, ranging from 8 to 17 % (self-report), 15 to 24 % (maternal report), and 20 to 32 % (peer report). Conscientiousness was consistently the most powerful predictor of students’ academic success and extraversion was negatively associated with all achievement indicators. The study provided support for a relatively stronger predictive utility of specific, rather than robust personality traits. Likewise, peer ratings of the students’ personality provided relatively larger increments in variance explained in academic achievements than maternal and self-ratings; in general, the personality trait ratings added more to the prediction of mathematics grades and the GPA relative to the prediction of success in languages. Among specific traits, subjectively perceived student intelligence was the most powerful and consistent predictor of final grades and GPA.  相似文献   

10.
The purposes of this study were to validate an instrument of attitudes toward science and to investigate grade level, type of school, and gender differences in Taiwan’s students’ personality traits and attitudes toward science as well as predictors of attitudes toward science. Nine hundred and twenty‐two elementary students and 1,954 secondary students completed the School Student Questionnaire in 2008. Factor analyses, correlation analyses, ANOVAs, and regressions were used to compare the similarities and differences among male and female students in different grade levels. The findings were as follows: female students had higher interest in science and made more contributions in teams than their male counterparts across all grade levels. As students advanced through school, student scores on the personality trait scales of Conscientiousness and Openness sharply declined; students’ scores on Neuroticism dramatically increased. Elementary school and academic high school students had significantly higher total scores on interest in science than those of vocational high and junior high school students. Scores on the scales measuring the traits of Agreeableness, Extraversion, and Conscientiousness were the most significant predictors of students’ attitudes toward science. Implications of these findings for classroom instruction are discussed.  相似文献   

11.
The argument in this paper has two parallel strands. One describes students’ conceptions of biology; the other uses Habermas’ epistemological framework as a way of suggesting alternative curricular questions. The two strands are brought together, since the research methodology is the situational‐interpretive curriculum orientation, and the findings are considered from this orientation. Thus, the data from the first strand is examined from the second strand, and consequently, new questions arise.

With traditional knowing, science education researchers “know” how students conceive of the science they are learning by having students react to statements of the researcher's conception of science. This way of knowing has been criticized because it depends upon the researcher's set of ways of looking at students’ conceptions. As such, it does not treat students’ knowledge as a first‐order phenomena; knowing is, rather, a second‐order phenomena since it is filtered through another person's conceptions. In this study the Habermasian framework is used as an alternative perspective of knowledge which allows students’ conceptions to be examined at the level at which the conceptions were constructed.

The study suggests that students conceptualize biology from three distinct philosophical positions; but when these positions are considered from the Habermasian framework, they all are examples of the empirical‐analytic tradition. As such, the students’ conceptions have not gone beyond explanatory knowledge, and this raises questions about the curriculum.  相似文献   

12.
Personalized genomics companies (PG; also called ‘direct-to-consumer genetics’) are businesses marketing genetic testing to consumers over the Internet. While much has been written about these new businesses, little attention has been given to their roles in science communication. This paper provides an analysis of the gene concept presented to customers and the relation between the information given and the science behind PG. Two quite different gene concepts are present in company rhetoric, but only one features in the science. To explain this, we must appreciate the delicate tension between PG, academic science, public expectation, and market forces.  相似文献   

13.
Five high school biology textbooks were examined to determine the inclusion of four aspects of the nature of science: (a) science as a body of knowledge, (b) science as a way of investigating, (c) science as a way of thinking, and (d) science and its interactions with technology and society. The textbooks analyzed were BSCS Biology—A Human Approach (Kendall/Hunt), BSCS Biology—An Ecological Approach (Kendall/Hunt), Biology—The Dynamics of Life (Glencoe), Modern Biology (Holt), and Prentice Hall Biology (Prentice Hall). The same six chapters or sections were analyzed in each textbook, which were the methods of science, cells, heredity, DNA, evolution, and ecology. A scoring procedure was used that resulted, for the most part, in good intercoder agreement with Cohen’s kappa values ranging from 0.36–1.00. The five recently published biology textbooks in the United States have a better balance of presenting biology with respect to the four themes of science literacy used in this research than those analyzed 15 years ago, especially with regard to devoting more text to engaging students in finding out answers, gathering information, and learning how scientists go about their work. Therefore, these biology textbooks are incorporating national science education reform guides that recommend a more authentic view of the scientific enterprise than similar textbooks used 15 years ago.  相似文献   

14.
15.
The transgenic mouse model is useful for studying the causes and potential cures for human genetic diseases. Exposing high school biology students to laboratory experience in developing transgenic animal models is logistically prohibitive. Computer-based simulation, however, offers this potential in addition to advantages of fidelity and reach. This study describes and evaluates a computer-based simulation to train advanced placement high school science students in laboratory protocols, a transgenic mouse model was produced. A simulation module on preparing a gene construct in the molecular biology lab was evaluated using a randomized clinical control design with advanced placement high school biology students in Mercedes, Texas (n?=?44). Pre-post tests assessed procedural and declarative knowledge, time on task, attitudes toward computers for learning and towards science careers. Students who used the simulation increased their procedural and declarative knowledge regarding molecular biology compared to those in the control condition (both p?<?0.005). Significant increases continued to occur with additional use of the simulation (p?<?0.001). Students in the treatment group became more positive toward using computers for learning (p?<?0.001). The simulation did not significantly affect attitudes toward science in general. Computer simulation of complex transgenic protocols have potential to provide a ??virtual?? laboratory experience as an adjunct to conventional educational approaches.  相似文献   

16.
基因工程制药研究进展   总被引:1,自引:0,他引:1  
以DNA重组技术为核心的现代生物技术是一个正在不断发展的高技术综合体系.也是国际上优先发展的高技术领域之一。自20世纪70年代基因工程诞生以来,最先应用基因工程且目前最为活跃的研究领域便是医药科学。DNA重组技术不仅直接提供干扰素、红细胞生成素(EPO)等基因工程药物,供临床治疗使用,提高对恶性肿肿瘤、心脑血管病、重要传染病和遗传病的防治水平.而且也广泛应用于改造已有的抗生素和生物制品等传统医药工业。基因工程药物已形成一个巨大的高新技术产业。本就基因工程制药的现状和研究进展作一概述。  相似文献   

17.
Since at least the eighteenth century scientific knowledge (then natural philosophy) was produced in groups of experts and specialists and was transmitted in schools, where, future experts and specialists were trained. The design of teaching has always been a complex process particularly in recent years when educational aims (for example, teaching scientific competence to everyone, not just to experts and specialists) present significant challenges. These challenges are much more than a simple reorganisation of the scientific knowledge pre-determined by the existing teaching tradition for different educational level. In the context of chemical education, the new teaching approaches should bring about not only the transmission of chemical knowledge but also a genuine chemical activity so as to ensure that students can acquire chemical thinking. Chemistry teaching should be revised according to contemporary demands of schooling. In order to move forward towards new teaching proposals, we must identify the genuine questions that generate ‘chemical criteria’ and we should focus on them for teaching. We think that a good strategy is to look for those criteria in the philosophy and history of chemistry, from the perspective of didactics of science. This paper will examine the following questions: (1) How can school science be designed as a world-modelling activity by drawing on the philosophy of science. (2) How can ‘stories’ about the emergence of chemical entities be identified by looking at the history of chemistry? (3) How can modelling strategies be structured in school chemistry activities?  相似文献   

18.
Abstract

Modern development of vocational education requires the joint participation of multiple departments and entities, and industry-education cooperation is a basic requirement. Against the backdrop of the third industrial revolution, cultivating skilled, innovative graduates and transforming the model of industrial technical innovation requires building a new, coordinated collaboration between higher vocational education and industrial development. From an open science perspective, collaboration between higher vocational education and industrial development takes place based on the basic inherent logic of entities’ heterogeneous innovative capabilities. Based on theoretical research and case studies, the collaboration between higher vocational education and industrial development must focus on establishing common visions for diverse industrial and educational entities, common interest foundations for school-enterprise microentities, and order parameters of collaborative frameworks and on establishing a long-lasting process for coordinating diverse school-enterprise entities, value integration, interest integration, resource integration, and collaborative implementation.  相似文献   

19.
The rapid advance of science and technology in today's world threatens to heighten, rather than minimize, the coming crisis in education. This paper advocates that the technological advances now possible must include advances also in the methods of education. Those now engaged in modern engineering and science must apply their ingenuity and resources to major creative efforts in the art of teaching. As with all other intellectual tasks in the coming period, the educational process must also be visualized as a "man-machine" process. The brain and senses of the human teacher must be extended by new engineering systems. This paper discusses specific examples, including feedback as a concept in automatic or semi-automatic lecturing, and stresses that by removing from the duties of the teacher those tasks which can be done as well or better by machines the teacher is elevated to those tasks requiring the superior intelligence and sensitivity of a trained human being.  相似文献   

20.
We explored Grade 6 students’ (n = 202) self-efficacy, epistemic beliefs, and science interest over a 10-day virtual ecology curriculum. Pre- and post-surveys were administered, and analyses revealed that (1) students became more self-efficacious about inquiring scientifically after participating in the activity; (2) students on average evinced a shift toward more constructivist views about the role of authority in justifying scientific claims; (3) students who identified more strongly with being a science person evinced greater gains in self-efficacy, developed a less constructivist view about the role of authority in justifying claims, and became more interested in science overall; and (4) students who held an incremental theory of ability evinced greater gains in self-efficacy. We discuss the implications of these findings for science educators and instructional designers in the design and use of immersive virtual worlds for middle school science students.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号